Current Search: far-infrared (x)
View All Items
- Title
- Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long wave infrared.
- Creator
-
Evans, Rachel, Peale, Robert, Ishigami, Masahiro, Lyakh, Arkadiy, University of Central Florida
- Abstract / Description
-
Metal(-)insulator(-)metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. Long-wave infrared (LWIR) fundamental absorptions are experimentally shown to be optimized for a ratio of dielectric thickness to top-structure dimension t/l (>) 0.08. The fundamental resonance wavelength is predicted by different analytic standing-wave theories to be ~2nl, where n is the dielectric refractive index. Thus, for the...
Show moreMetal(-)insulator(-)metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. Long-wave infrared (LWIR) fundamental absorptions are experimentally shown to be optimized for a ratio of dielectric thickness to top-structure dimension t/l (>) 0.08. The fundamental resonance wavelength is predicted by different analytic standing-wave theories to be ~2nl, where n is the dielectric refractive index. Thus, for the dielectrics SiO2, AlN, and TiO2, l values of a few microns give fundamentals in the 8-12 micron LWIR wavelength region. Agreement of observed fundamental resonance wavelength with theory is better for t/l (>) ~0.2. Harmonics at shorter wavelengths are always observed, but we show that there are additional resonances in the far-infrared 20-50 micron wavelength range, well beyond the predicted fundamental. These appear to be due to dispersion. They may impact selectivity in spectral sensing applications.
Show less - Date Issued
- 2018
- Identifier
- CFE0007176, ucf:52267
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007176
- Title
- MONTE CARLO SIMULATION OF HOLE TRANSPORT AND TERAHERTZ AMPLIFICATION IN MULTILAYER DELTA DOPED SEMICONDUCTOR STRUCTURES.
- Creator
-
Dolguikh, Maxim, Peale, Robert, University of Central Florida
- Abstract / Description
-
Monte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers...
Show moreMonte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical or in-plane hole transport in the presence of a perpendicular in-plane magnetic field. Inversion population on intersubband transitions arises due to light hole accumulation in E B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77 K. Test structures grown by chemical vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions. The same device structure is considered in GaAs. The case of Si is much more complicated due to strong anisotropy of the valence band. The primary new result for Si is the first consideration of the anisotropy of optical phonon scattering for hot holes.
Show less - Date Issued
- 2005
- Identifier
- CFE0000863, ucf:46672
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000863