Current Search: magnetic (x)
Pages
-
-
Title
-
SPIN QUANTUM DYNAMICS IN MOLECULAR MAGNETS.
-
Creator
-
Henderson, John, del Barco, Enrique, University of Central Florida
-
Abstract / Description
-
Molecular magnets are ideal systems to probe the realm that borders quantum and classical physics, as well as to study decoherence phenomena in nanoscale systems. The control of the quantum behavior of these materials and their structural characteristics requires synthesis of new complexes with desirable properties which will allow probing of the fundamental aspects of nanoscale physics and quantum information processing. Of particular interest among the magnetic molecular materials are...
Show moreMolecular magnets are ideal systems to probe the realm that borders quantum and classical physics, as well as to study decoherence phenomena in nanoscale systems. The control of the quantum behavior of these materials and their structural characteristics requires synthesis of new complexes with desirable properties which will allow probing of the fundamental aspects of nanoscale physics and quantum information processing. Of particular interest among the magnetic molecular materials are single-molecule magnets (SMMs) and antiferromagnetic (AFM) molecular wheels in which the spin state of the molecule is known to behave quantum mechanically at low temperatures. In previous experiments the dynamics of the magnetic moment of the molecules is governed by incoherent quantum tunneling. Short decoherence times are mainly due to interactions between molecular magnets within the crystal and interactions of the electronic spin with the nuclear spin of neighboring ions within the molecule. This decoherence problem has imposed a limit to the understanding of the molecular spin dynamics and the sources of decoherence in condensed matter systems. Particularly, intermolecular dipolar interactions within the crystal, which shorten the coherence times in concentrated samples, have stymied progress in this direction. Several recent works have reported a direct measurement of the decoherence time in molecular magnets. This has been done by eliminating the dephasing created by dipolar interactions between neighboring molecules. This has been achieved by a) a dilution of the molecules in a liquid solution to decrease the dipolar interaction by separating the molecules, and b) by polarizing the spin bath by applying a high magnetic field at low temperatures. Unfortunately, both approaches restrict the experimental studies of quantum dynamics. For example, the dilution of molecular magnets in liquid solution causes a dispersion of the molecular spin orientation and anisotropy axes, while the large fields required to polarize the spin bath overcome the anisotropy of the molecular spin. In this thesis I have explored two methods to overcome dipolar interactions in molecular magnets: a) studying the dynamics of molecular magnets in single crystals where the separation between magnetic molecules is obtained by chemical doping or where the high crystalline quality allows observations intrinsic to the quantum mechanical nature of the tunneling of the spin, and b) studying the electronic transport through an individual magnetic molecule which has been carefully placed in a single-electron transistor device. I have used EPR microstrip resonators to measure Fe17Ga molecular wheels within single crystals of Fe18 AFM wheels, as well as demonstrating, for the first time in a Single Molecule Magnet, the complete suppression of a Quantum Tunneling of the Magnetization transition forbidden by molecular symmetry.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002799, ucf:48117
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002799
-
-
Title
-
PLANAR MAGNETICS DESIGN FOR LOW-VOLTAGEDC-DC CONVERTERS.
-
Creator
-
Xiao, Shangyang, Wu, Thomas X., University of Central Florida
-
Abstract / Description
-
The objectives of this thesis are to design planar magnetic devices based on accurate electromagnetic analysis and miniaturize magnetics within desired low profile as well as small footprint. A novel methodology based on FEM simulation is proposed. By introducing Maxwell 2D simulator, optimal interleaving structures can be found to reduce AC losses that cannot otherwise be accounted for by conventional method. And 3D simulator is employed to make the results more realistic. Thus, high...
Show moreThe objectives of this thesis are to design planar magnetic devices based on accurate electromagnetic analysis and miniaturize magnetics within desired low profile as well as small footprint. A novel methodology based on FEM simulation is proposed. By introducing Maxwell 2D simulator, optimal interleaving structures can be found to reduce AC losses that cannot otherwise be accounted for by conventional method. And 3D simulator is employed to make the results more realistic. Thus, high-efficiency high-power density magnetics is achieved.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000075, ucf:46120
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000075
-
-
Title
-
CONTROLLED DEPOSITION OF MAGNETIC MOLECULES AND NANOPARTICLES ON ATOMICALLY FLAT GOLD SURFACES.
-
Creator
-
Haque, Md. Firoze, del Barco, Enrique, University of Central Florida
-
Abstract / Description
-
In this thesis I am presenting a detailed study to optimize the deposition of magnetic molecules and gold nanoparticles in atomically flat surfaces by self-assembling them from solution. Epitaxially grown and atomically flat gold surface on mica is used as substrate for this study. These surfaces have roughness of the order one tenth of a nanometer and are perfect to image molecules and nanoparticles in the 1-10 nanometers range. The purpose of these studies is to find the suitable parameters...
Show moreIn this thesis I am presenting a detailed study to optimize the deposition of magnetic molecules and gold nanoparticles in atomically flat surfaces by self-assembling them from solution. Epitaxially grown and atomically flat gold surface on mica is used as substrate for this study. These surfaces have roughness of the order one tenth of a nanometer and are perfect to image molecules and nanoparticles in the 1-10 nanometers range. The purpose of these studies is to find the suitable parameters and conditions necessary to deposit a monolayer of nano-substance on chips containing gold nanowires which will eventually be used to form single electron transistors by electromigration breaking of the nanowire. Maximization of the covered surface area is crucial to optimize the yield of finding a molecule/nanoparticle near the gap formed in the nanowire after electromigration breaking. Coverage of the surface by molecules/nanoparticles mainly depends on the deposition time and concentration of the solution used for the self-assembly. Deposition of the samples under study was done for different solution concentrations and deposition times until a self-assembly monolayer covering most of the surface area is obtained. Imaging of the surfaces after deposition was done by tapping-mode AFM. Analysis of the AFM images was performed and deposition parameters (i.e. coverage or molecule/particle size distribution) were obtained. The subjects of this investigation were a molecular polyoxometalate, a single-molecule magnet and functionalized gold nanoparticles. The obtained results agree with the structure of each of the studied systems. Using the optimized deposition parameters found in this investigation, single-electron transport measurements have been carried out. Preliminary results indicate the right choice of the deposition parameters.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002338, ucf:47795
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002338
-
-
Title
-
MAGNETIC NANOSENSORS FOR MULTIPLEXED BACTERIAL PATHOGENESIS IDENTIFICATION.
-
Creator
-
Kaittanis, Charalambos, Perez, J. Manuel, University of Central Florida
-
Abstract / Description
-
Developing diagnostic modalities that utilize nanomaterials and miniaturized detectors can have an impact in point-of-care diagnostics. Diagnostic systems that (i) are sensitive, robust, and portable, (ii) allow detection in clinical samples, (iii) require minimal sample preparation yielding results quickly, and (iv) can simultaneously quantify multiple targets, would have a great potential in biomedical research and public healthcare. Bacterial infections still cause pathogenesis throughout...
Show moreDeveloping diagnostic modalities that utilize nanomaterials and miniaturized detectors can have an impact in point-of-care diagnostics. Diagnostic systems that (i) are sensitive, robust, and portable, (ii) allow detection in clinical samples, (iii) require minimal sample preparation yielding results quickly, and (iv) can simultaneously quantify multiple targets, would have a great potential in biomedical research and public healthcare. Bacterial infections still cause pathogenesis throughout the world (Chapter I). The emergence of multi-drug resistant strains, the potential appearance of bacterial pandemics, the increased occurrence of bacterial nosocomial infections, the wide-scale food poisoning incidents and the use of bacteria in biowarfare highlight the need for designing novel bacterial-sensing modalities. Among the most prominent disease-causing bacteria are strains of Escherichia coli, like the E. coli O157:H7 that produces the Shiga-like toxin (Stx). Apart from diarrheagenic E. coli strains, others cause disease varying from hemolytic uremic syndrome and urinary tract infections to septicemia and meningitis. Therefore, the detection of E. coli needs to be performed fast and reliably in diverse environmental and clinical samples. Similarly, Mycobacterium avium spp. paratuberculosis (MAP), a fastidious microorganism that causes JohneÃÂ's disease in cattle and has been implicated in CrohnÃÂ's disease (CD) etiology, is found in products from infected animals and clinical samples from CD patients, making MAP an excellent proof-of-principle model. Recently, magnetic relaxation nanosensors (MRnS) provided the first applications of improved diagnostics with high sensitivity and specificity. Nucleic acids, proteins, viruses and enzymatic activity were probed, yet neither large targets (for instance bacterial and mammalian cells) nor multiple bacterial disease parameters have been simultaneously monitored, in order to provide thorough information for clinical decision making. Therefore, the goal of this study was to utilize MRnS for the sensitive identification of multiple targets associated with bacterial pathogenesis, while monitoring virulence factors at the microorganism, nucleic acid and virulence factor levels, to facilitate improved diagnosis and optimal treatment regimes. To demonstrate the versatility of MRnS, we used MAP as our model system, as well as several other pathogens and eukaryotic cell lines. In initial studies, we developed MRnS suitable for biomedical applications (Chapter II). The resulting MRnS were composed of an iron oxide core, which was caged within a biodegradable polymeric coating that could be further functionalized for the attachment of molecular probes. We demonstrated that depending on the polymer used the physical and chemical properties of the MRnS can be tailored. Furthermore, we investigated the role of polymer in the enzyme-mimicking activity of MRnS, which may lead to the development of optimized colorimetric in vitro diagnostic systems such as immunoassays and small-molecule-based screening platforms. Additionally, via facile conjugation chemistries, we prepared bacterium-specific MRnS for the detection of nucleic acid signatures (Chapter III). Considering that MAP DNA can be detected in clinical samples and isolates from CD patients via laborious isolation and amplification procedures requiring several days, MRnS detected MAPÃÂ's IS900 nucleic acid marker up to a single MAP genome copy detection within 30 minutes. Furthermore, these MRnS achieved equally fast IS900 detection even in crude DNA extracts, outperforming the gold standard diagnostic method of nested Polymerase Chain Reaction (nPCR). Likewise, the MRnS detected IS900 with unprecedented sensitivity and specificity in clinical isolates obtained from blood and biopsies of CD patients, indicating the clinical utility of these nanosensors. Subsequently, we designed MRnS for the detection of MAP via surface-marker recognition in complex matrices (Chapter III). Milk and blood samples containing various concentrations of MAP were screened and quantified without any processing via MRnS, obtaining dynamic concentration-dependent curves within an hour. The MAP MRnS were able not only to identify their target in the presence of interferences from other Gram positive and Gram negative bacteria, but could differentiate MAP among other mycobacteria including Mycobacterium tuberculosis. In addition, detection of MAP was performed in clinical isolates from CD patients and homogenized tissues from JohneÃÂ's disease cattle, demonstrating for the first time the rapid identification of bacteria in produce, as well as clinical and environmental samples. However, comparing the unique MAP quantification patterns with literature-available trends of other targets, we were prompted to elucidate the underlying mechanism of this novel behavior (Chapter IV). We hypothesized that the nanoparticle valency ÃÂ the amount of probe on the surface of the MRnS ÃÂ may have modulated the changes in the relaxation times (ΔΤ2) upon MRnS ÃÂ target association. To address this, we prepared MAP MRnS with high and low anti-MAP antibody levels using the same nanoparticle formulation. Results corroborated our hypothesis, but to further bolster it we investigated if this behavior is target-size-independent. Hence utilizing small-molecule- and antibody-carrying MRnS, we detected cancer cells in blood, observing similar detection patterns that resembled those of the bacterial studies. Notably, a single cancer cell was identified via high-valency small-molecule MRnS, having grave importance in cancer diagnostics because a single cancer cell progenitor in circulation can effectively initiate the metastatic process. Apart from cells, we also detected the Cholera Toxin B subunit with valencly-engineered MRnS, observing similar to the cellular targetsÃÂ' diagnostic profiling behavior. Finally, as bacterial drug resistance is of grave healthcare importance, we utilized MRnS for the assessment of bacterial metabolism and drug susceptibility (Chapter V). Contrary to spectophotometric and visual nanosensors, their magnetic counterparts were able to quickly assess bacterial carbohydrate uptake and sensitivity to antibiotics even in blood. Two MRnS-based assay formats were devised relying on either the Concanavalin A (Con A)-induced clustering of polysaccharide-coated nanoparticles or the association between free carbohydrates and Con A-carrying MRnS. Overall, taking together these results, as well as those on pathogen detection and the recent instrumentation advancements, the use of MRnS in the clinic, the lab and the field should be anticipated.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0002982, ucf:47954
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002982
-
-
Title
-
convective heat transfer in quasi-one-dimensional magnetic fluid in horizontal field and temperature gradients.
-
Creator
-
Huang, Jun, Luo, Weili, Schulte, Alfons, Del Barco, Enrique, Kassab, Alain, University of Central Florida
-
Abstract / Description
-
In this work we studied the convective heat transfer in a magnetic fluid in both zero and applied magnetic fields. The natural convection is observed in a quasi-one dimensional magnetic fluid in a horizontal temperature gradient. The horizontal non-homogeneous magnetic fields were applied across the sample cell either parallel or anti-parallel to the temperature gradient. The temperature profile was measured by eight thermocouples and temperature sensitive paint. The flow velocity field and...
Show moreIn this work we studied the convective heat transfer in a magnetic fluid in both zero and applied magnetic fields. The natural convection is observed in a quasi-one dimensional magnetic fluid in a horizontal temperature gradient. The horizontal non-homogeneous magnetic fields were applied across the sample cell either parallel or anti-parallel to the temperature gradient. The temperature profile was measured by eight thermocouples and temperature sensitive paint. The flow velocity field and streamlines were obtained by optical flow method. Calculated Nusselt numbers, Rayleigh number, and Grashof number show that the convective flow is the main heat transfer mechanism in applied fields in our geometry. It was found that when the field gradient is parallel with temperature gradient, the fields enhance the convective heat transfer while the fields inhibit it in anti-parallel configuration by analyzing the temperature difference across the sample, flow patterns, and perturbation Q field in applied fields. Magnetic Rayleigh number and magnetic Grashof number show that the thermomagnetic convections dominate in high magnetic fields. It is shown that the physical nature of the field effect is corresponding to the magnetic body force which is perpendicular to the gravity in our experiments. When the direction of the magnetic body force is same with temperature gradient in parallel configuration, the body force increases the convective heat transfer; while it has opposite effect in anti-parallel configuration.Our study will not only shed light on the fundamental mechanisms for thermomagnetic convection but also help to develop the potential field-controlled heat transfer devices.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005957, ucf:50810
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005957
-
-
Title
-
MAGNETICS DESIGN FOR HIGH CURRENT LOW VOLTAGE DC/DC CONVERTER.
-
Creator
-
zhou, hua, Wu, Thomas Xinzhang, University of Central Florida
-
Abstract / Description
-
With the increasing demand for small and cost efficient DC/DC converters, the power converters are expected to operate with high efficiency. Magnetics components design is one of the biggest challenges in achieving the higher power density and higher efficiency due to the significant portion of magnetics components volume in the whole power system. At the same time, most of the experimental phenomena are related to the magnetics components. So, good magnetics components design is one of the...
Show moreWith the increasing demand for small and cost efficient DC/DC converters, the power converters are expected to operate with high efficiency. Magnetics components design is one of the biggest challenges in achieving the higher power density and higher efficiency due to the significant portion of magnetics components volume in the whole power system. At the same time, most of the experimental phenomena are related to the magnetics components. So, good magnetics components design is one of the key issues to implement low voltage high current DC/DC converter. Planar technology has many advantages. It has low profile construction, low leakage inductance and inter-winding capacitance, excellent repeatability of parasitic properties, cost efficiency, great reliability, and excellent thermal characteristics. On the other side, however, planar technology also has some disadvantages. Although it improves thermal performance, the planar format increases footprint area. The fact that windings can be placed closer in planar technology to reduce leakage inductance also often has an unwanted effect of increasing parasitic capacitances. In this dissertation, the planar magnetics designs for high current low voltage applications are thoroughly investigated and one CAD design methodology based on FEA numerical analysis is proposed. Because the frequency dependant parasitic parameters of magnetics components are included in the circuit model, the whole circuit analysis is more accurate. When it is implemented correctly, integrated magnetics technique can produce a significant reduction in the magnetic core content number and it can also result in cost efficient designs with less weight and smaller volume. These will increase the whole converter's power density and power efficiency. For high output current and low output voltage applications, half bridge in primary and current doublers in secondary are proved to be a very good solution. Based on this topology, four different integrated magnetics structures are analyzed and compared with each other. One unified model is introduced and implemented in the circuit analysis. A new integrated magnetics component core shape is proposed. All simulation and experimental results verify the integrated magnetics design. There are several new magnetics components applications shown in the dissertation. Active transient voltage compensator is a good solution to the challenging high slew rate load current transient requirement of VRM. The transformer works as an extra voltage source. During the transient periods, the transformer injects or absorbs the extra transient to or from the circuit. A peak current mode controlled integrated magnetics structure is proposed in the dissertation. Two transformers and two inductors are integrated in one core. It can force the two input capacitors of half bridge topology to have the same voltage potential and solve the voltage unbalance issue. The proposed integrated magnetics structure is simple compared with other methods implementing the current mode control to half bridge topology. Circuit analysis, simulation and experimental results verify the feasibility of these applications.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001823, ucf:47341
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001823
-
-
Title
-
Design of High-Efficiency Rare-Earth Permanent Magnet Synchronous Motor and Drive System.
-
Creator
-
Liu, Hanzhou, Wu, Thomas, Batarseh, Issa, Haralambous, Michael, Lin, Mingjie, Chow, Louis, University of Central Florida
-
Abstract / Description
-
Utilization of renewable energy has become the future trend in the trucking industry. Electrical power generated from renewable energy can replace part of the fuel usage. There is usually limited space for storing on-board battery. Thus, to better utilize the battery power, it becomes critical to have an efficient energy conversion device that can transfer energy from battery to amenities such as air conditioner, microwave, TV, mini refrigerator, etc. In this dissertation, a designed...
Show moreUtilization of renewable energy has become the future trend in the trucking industry. Electrical power generated from renewable energy can replace part of the fuel usage. There is usually limited space for storing on-board battery. Thus, to better utilize the battery power, it becomes critical to have an efficient energy conversion device that can transfer energy from battery to amenities such as air conditioner, microwave, TV, mini refrigerator, etc. In this dissertation, a designed permanent magnet synchronous motor (PMSM) can be such energy conversion device for an electric Auxiliary Power Unit (APU) application, which will have a desired output power of 2 kW at 2krpm, and maintain an efficiency greater than 90%. The design calls for good performance over a speed range of 1.5 krpm to 2.5 krpm. The current air conditioning system for automobile works only by (")on(") or (")off(") mode. For the heat mode, that means it is on with heat once the cabin temperature drops down to a level and off if the temperature rises back above that level. For the cool mode, that means it is on with cold air once the cabin temperature rises above a level, and off if the temperature drops back to that level. This is because the motor does not have the speed control functionality according to the temperature variation and people in the cabin do not feel much comfortable for that temperature change periodically as well as the inefficient energy consumption. With our novel technology, the designed motor can adjust its speed through the embedded system of our novel DC to AC inverter to provide a variable load. For example, with high efficiency, the fully charged battery sets (48 volts) can supply the electrical power and cooling to the cabin forabout 10 hours without recharging using the main engine.Copper loss is the most significant part of all the losses in low speed electric machines. Reducing the copper loss is the key to build highly efficient machine. We use copper wires with the current density lower than traditional design which result in large cross section of the wire and thus reduce the copper loss and improve the efficiency. This also makes thermal management easier and reduces the need to use active cooling methodologies (such as fan, liquid cooling or spray cooling); and hence the overall power density of the whole system (including cooling devices) will not decease much. In traditional machine design, the torque angle is designed to be in the rangeof 15 to 30 degrees at the rated power and speed. In our high efficiency motor design, we propose to use much lower torque angle of 2 to 15 degrees at the rated power and speed. Such design caneffectively increase the overload power handling capability and efficiency. Besides, small torque angle will result in large airgap size and increased thickness of the permanent magnets. Large airgap helps to reduce the windage loss of the machine and generates a lot less mechanical noise based on our design experience. Increased thickness of the permanent magnets helps to avoid thedemagnetization.As the technology of advanced micro-controller develops, fast response power electronic devices can be used in the motor controller. A novel design of DC to AC inverter with the fieldoriented control scheme and sliding mode observer algorithm for driving the designed motor is developed. The inverter has the capability of driving the motor with its output power at 2 kW.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006224, ucf:51064
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006224
-
-
Title
-
SYNTHESIS AND POLYMERIZATION OF BIFUNCTIONAL FIVE-MEMBERED CYCLIC DITHIOCARBONATES AND THEIR USE AS STABILIZERS FOR MAGNETIC NANOPARTICLES.
-
Creator
-
Daoudi, Mohammed, Belfield, Kevin, University of Central Florida
-
Abstract / Description
-
Novel bifunctional five-membered cyclic dithiocarbonates (1,3-oxathiolane-2-thione)s were synthesized by the reactions of the corresponding bifunctional oxiranes (epoxides) with carbon disulfide at room temperature with lithium bromide as catalyst. Full characterization of these monomers was performed including elemental analysis, proton and carbon nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-mass spectroscopy, and Fourier transmission infrared (FTIR) spectroscopy. The...
Show moreNovel bifunctional five-membered cyclic dithiocarbonates (1,3-oxathiolane-2-thione)s were synthesized by the reactions of the corresponding bifunctional oxiranes (epoxides) with carbon disulfide at room temperature with lithium bromide as catalyst. Full characterization of these monomers was performed including elemental analysis, proton and carbon nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-mass spectroscopy, and Fourier transmission infrared (FTIR) spectroscopy. The polyaddition polymerization of 1,3-oxathiolane-2-thione with 1,4-diaminobutane at room temperature resulted in a poly(thiourethane) material. The latter undergoes crosslinking due probably to the autooxidation of the product and formation of disulfide linkages. The five-membered cyclic dithiocarbonate, 5-decyl-1,3-oxathiolane-2-thione, was used a model to demonstrate the usefulness of five-membered cyclic dithiocarbonates for the preparation of compounds bearing thiol and thiocarbamate groups. This functionality was desired for use as metallic nanoparticle stabilizers. A thermal decomposition oxidation method was used to synthesize the magnetic iron nanoparticles. The stabilized magnetic nanoparticles were characterized by transmission electron microscopy (TEM) to determine the shape and the size of the nanoparticles. Energy dispersive spectroscopy (EDS) was used to analyze the composition of the magnetic nanoparticles.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000327, ucf:46299
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000327
-
-
Title
-
Exchange coupling in molecular magnets: Zero, one and three dimensions.
-
Creator
-
Amjad, Asma, Gonzalez Garcia, Enrique, Klemm, Richard, Peale, Robert, Hill, Stephen, University of Central Florida
-
Abstract / Description
-
Molecular magnets with different dimensionality, whether they are zero-dimensional single-molecule magnets (SMM) or one-dimensional single-chain magnets (SCM) are very interesting, since they allow probing the fundamental aspects bordering quantum and classical physics at the nanoscale level. This dissertation covers experimental studies of two Mn-based exchange-coupled molecule-based magnets and two Co-based single-chain magnets, using both dc Hall-effect magnetometry and electron paramagnet...
Show moreMolecular magnets with different dimensionality, whether they are zero-dimensional single-molecule magnets (SMM) or one-dimensional single-chain magnets (SCM) are very interesting, since they allow probing the fundamental aspects bordering quantum and classical physics at the nanoscale level. This dissertation covers experimental studies of two Mn-based exchange-coupled molecule-based magnets and two Co-based single-chain magnets, using both dc Hall-effect magnetometry and electron paramagnet resonance (EPR) techniques. In these multi-dimensional systems, the spin of the molecule exhibits quantum mechanical behavior at low temperature. It is quite interesting to observe the effect of magnetic exchange interactions on the magnetic properties of various complexes; hence they strongly affect the magnetic behavior.In this dissertation, the research is initiated with the study of low-magnetic-nuclearity molecules, starting with a spectroscopic study of a significantly anisotropic Mn(IV) monomer. At low temperature the molecule possesses easy-plane type anisotropy of a remarkable magnitude. Although the molecule is not a single-molecule magnet, the remarkable anisotropy can initiate synthesis of newer and better molecular magnets with Mn(IV) as the main building block. Furthermore, the interplay between the magnetic anisotropy and the inter-ion exchange interactions (J) within the molecule are probed for a dimer and a trimer where the magnetic core is comprised of two and three ions respectively. In the Mn-based case of the dimer, the low coupling between the atoms leads to significant state mixing, thus making it impossible to assign the individual spin states to the dimer or to the respective individual Mn(II) ions. In the case of the trimer, lowering of the symmetry achieved by fine tuning of the inter-ion exchange interactions leads to relieving of frustration in the antiferromagnetic (AF) triangular Mn(III) system, resulting in a well defined ground state and significant zero field splitting. Also a clear hysteretic behavior observed in this system demonstrates its SMM nature at low temperature. Finally, high-field high-frequency magnetic and spectroscopic studies performed on two cobalt-based SCMs reveal that formation of magnetic domains by exchange interactions within the chain are strongly influenced by thermal fluctuations. The chain possesses a uniaxial anisotropy with the quantization axis lying along the length of the chain. Moreover it is shown that modulation of the magnitude of inter- and intra-chain interactions results in a three-dimensional dynamics in one of the samples. Interestingly, detailed dc magnetic studies show a tunable crossover between one- and three-dimensional magnetic dynamics as a function of temperature and/or magnetic field sweep rate. Our voyage through several molecular systems of different dimensionality have allowed us to expand our understanding of the role of exchange interactions on the magnetic behavior in molecular magnetism.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004806, ucf:49723
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004806
-
-
Title
-
DESIGN AND PERFORMANCE EVALUATION OF AN INTEGRATED MINIATURE SINGLE STAGE CENTRIFUGAL COMPRESSOR AND PERMANENT MAGNET SYNCHRONOUS MOTOR.
-
Creator
-
ACHARYA, DIPJYOTI, Kapat, Jayanta, University of Central Florida
-
Abstract / Description
-
An attempt has been made in this present work to design, fabricate and performance evaluate an integrated single stage centrifugal compressor and permanent magnet synchronous motor which is a key component of the reverse brayton cycle cryocooler. An off the shelf compressor the driven and electric motor the driver was not available commercially to suffice the requirements of the reverse brayton cryocooler. The integrated compressor-motor system was designed and tested with air...
Show moreAn attempt has been made in this present work to design, fabricate and performance evaluate an integrated single stage centrifugal compressor and permanent magnet synchronous motor which is a key component of the reverse brayton cycle cryocooler. An off the shelf compressor the driven and electric motor the driver was not available commercially to suffice the requirements of the reverse brayton cryocooler. The integrated compressor-motor system was designed and tested with air as the working fluid at mass flow rate of 7.3 grams per sec, with a compression ratio of 1.58 and driven by a 2 KW permanent magnet synchronous motor at a design speed of 108,000 rpm. A permanent magnet synchronous motor rotor was designed to operate to operate over 200,000 rpm at 77 Kelvin temperature. It involved iterative processes involving structural, thermal and rotordynamic analysis of the rotor. Selection of high speed ceramic ball bearings, their mounting, fit and pre-load played prominent role. Attempts were made to resolve misalignment issues for the compressor motor system, which had severe impact on the rotordynamic performance of the system and therefore losses at high speeds , . A custom designed flexible coupler was designed and fabricated to run the compressor motor system. An integrated compressor motor system was an innovative design to resolve considerably several factors which hinder a high operational speed. Elimination of the coupler, reduction of number of bearings in the system and usage of fewer components on the rotor to increase the stiffness were distinct features of the integrated system. Several custom designed test-rigs were built which involved precision translation stages and angle brackets. Motor control software, an emulator, a DSP and a custom designed motor controller was assembled to run the motor. A cooling system was specially designed to cool the stator rotor system. A pre-loading structure was fabricated to adequately pre-load the bearings. Flow measurement instruments such as mass flow meter, pressure transducers and thermocouples were used at several locations on the test rig to monitor the flow. An adjustable inlet guide vane was designed to control the tip clearance of the impeller.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001207, ucf:46955
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001207
-
-
Title
-
ANALYSIS AND MODELING OF THE EDS MAGLEV SYSTEM BASED ON THE HALBACH PERMANENT MAGNET ARRAY.
-
Creator
-
Han, Qinghua, Phillips, Ronald, University of Central Florida
-
Abstract / Description
-
Electro-dynamic suspension (EDS) Magnetic levitation (Maglev) with its advantage in maintenance, safety, efficiency, speed, and noise is regarded as a leading candidate for the next generation transportation / space launch assist system. The Halbach array due to its unique magnetic field feature has been widely used in various applications. The EDS system using Halbach arrays leads to the potential EDS system without super-conductor (SC) technology. In this thesis, the Halbach array magnetic...
Show moreElectro-dynamic suspension (EDS) Magnetic levitation (Maglev) with its advantage in maintenance, safety, efficiency, speed, and noise is regarded as a leading candidate for the next generation transportation / space launch assist system. The Halbach array due to its unique magnetic field feature has been widely used in various applications. The EDS system using Halbach arrays leads to the potential EDS system without super-conductor (SC) technology. In this thesis, the Halbach array magnetic field and the dynamics of a novel Halbach array EDS Maglev system were considered. The practical Halbach array magnetic field was analyzed using both a Fourier series approach and the finite element method (FEM). In addition, the optimal Halbach array geometry was derived and analyzed. A novel active magnetic array was introduced and used in the Halbach array EDS Maglev configuration. Further more, since the system is self-regulated in lateral, roll, pitch, and yaw directions, the control was simplified and can be implemented electronically. The dynamic stability analysis and simulation results showed that the system is marginally stable and a control mechanism is needed for stability and ride comfort control. The six degree of freedom (DOF) dynamics, and the vehicle's mass center offset effects on those dynamics were investigated with multiple passive and active magnetic forces. The results indicated that the vehicle's mass center offset has a strong effect on the dynamics of the Maglev system due to the uniqueness of the magnetic force and also that the mass center offset can cause Maglev oscillations at the take off stage. In order to guarantee the dynamic stability and ride comfort of the Maglev system, an optimized active damping and a linear quadratic regulator (LQR) control were developed. Finally, the simulation confirmed the effectiveness of the proposed multi-input and multi-output (MIMO) control designs.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000072, ucf:46145
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000072
-
-
Title
-
The Effect of Magnetic Bearing on the Vibration and Friction of a Wind Turbine.
-
Creator
-
Vorwaller, Mark, Lin, Kuo-Chi, Raghavan, Seetha, Gou, Jihua, University of Central Florida
-
Abstract / Description
-
Demands for sustainable energy have resulted in increased interest in wind turbines. Thus, despite widespread economic difficulties, global installed wind power increased by over 20% in 2011 alone. Recently, magnetic bearing technology has been proposed to improve wind turbine performance by mitigating vibration and reducing frictional losses. While magnetic bearing has been shown to reduce friction in other applications, little data has been presented to establish its effect on vibration and...
Show moreDemands for sustainable energy have resulted in increased interest in wind turbines. Thus, despite widespread economic difficulties, global installed wind power increased by over 20% in 2011 alone. Recently, magnetic bearing technology has been proposed to improve wind turbine performance by mitigating vibration and reducing frictional losses. While magnetic bearing has been shown to reduce friction in other applications, little data has been presented to establish its effect on vibration and friction in wind turbines. Accordingly, this study provides a functional method for experimentally evaluating the effect of a magnetic bearing on the vibration and efficiency characteristics of a wind turbine, along with associated results and conclusions.The magnetic bearing under examination is a passive, concentric ring design. Vibration levels, dominant frequency components, and efficiency results are reported for the bearing as tested in two systems: a precision test fixture, and a small commercially available wind turbine. Data is also presented for a geometrically equivalent ball bearing, providing a benchmark for the magnetic bearing's performance. The magnetic bearing is conclusively shown to reduce frictional losses as predicted by the original hypothesis. However, while reducing vibration in the precision test fixture, the magnetic bearing demonstrates increased vibration in the small wind turbine. This is explained in terms of the stiffness and damping of the passive test bearing. Thus, magnetic bearing technology promises to improve wind turbine performance, provided that application specific stiffness and damping characteristics are considered in the bearing design.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004452, ucf:49326
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004452
-
-
Title
-
SURVEY OF METEORITE PHYSICAL PROPERTIES: DENSITY, POROSITY AND MAGNETIC SUSCEPTIBILITY.
-
Creator
-
Macke, Robert, Britt, Daniel, University of Central Florida
-
Abstract / Description
-
The measurement of meteorite physical properties (i.e. density, porosity, magnetic susceptibility) supplements detailed chemical and isotopic analyses for small samples (thin sections or ~300 mg portions) by providing whole-rock data for samples massing in the tens of grams. With the advent of fast, non-destructive and non-contaminating measurement techniques including helium ideal-gas pycnometry for grain density, the Archimedean ÃÂ"glass beadÃÂ" method...
Show moreThe measurement of meteorite physical properties (i.e. density, porosity, magnetic susceptibility) supplements detailed chemical and isotopic analyses for small samples (thin sections or ~300 mg portions) by providing whole-rock data for samples massing in the tens of grams. With the advent of fast, non-destructive and non-contaminating measurement techniques including helium ideal-gas pycnometry for grain density, the Archimedean ÃÂ"glass beadÃÂ" method for bulk density and (with grain density) porosity, and the use of low-field magnetometry for magnetic susceptibility, all of which rely on compact and portable equipment, this has enabled a comprehensive survey of these physical properties for a wide variety of meteorites. This dissertation reports on the results of that survey, which spanned seven major museum and university meteorite collections as well as the Vatican collection. Bulk and grain densities, porosities and magnetic susceptibilities are reported for 1228 stones from 664 separate meteorites, including several rare meteorite types that are underrepresented in previous studies. Summarized here are data for chondrites (carbonaceous, ordinary and enstatite) and stony achondrites. Several new findings have resulted from this study. From the use of a ÃÂ"weathering modulusÃÂ" based on grain density and magnetic susceptibility to quantify weathering in finds, it is observed that the degree of weathering of ordinary chondrites is dependent on their initial porosity, which becomes reduced to less than ~8% for all finds, but for enstatite chondrites weathering actually increases porosity. Grain density and magnetic susceptibility, which have been shown to distinguish H, L and LL ordinary chondrites, also may distinguish shergottites, nakhlites and chassignites from each other, but the two groups of enstatite chondrites (EH and EL) remain indistinguishable in these properties. H chondrite finds exhibit a slight negative trend in porosity with increasing petrographic type, and all chondrite falls together exhibit a pronounced negative trend in porosity spanning all petrographic types. The overall trend corresponds roughly to a positive trend in porosities with respect to both degree of oxidation and percentage of matrix. It also corresponds to the macroporosities of analogous asteroids. These traits constrain models of conditions in the solar nebula and the formation of chondrite parent-body precursors.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003424, ucf:48420
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003424
-
-
Title
-
Optical and Magnetic properties of nanostructures.
-
Creator
-
Nayyar, Neha, Rahman, Talat, Stolbov, Sergey, Ishigami, Marsahir, Hernandez, Florencio, University of Central Florida
-
Abstract / Description
-
In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms...
Show moreIn this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is larger than 20. In the case of coupled pure chains it was found that the plasmon energy grows as square root of the number of chains, and reaches the visible light energy 1.8eV for the case of three parallel chains. Doping of pure Au chains with transition-metal atoms leads in many cases to formation of additional plasmon peaks close in energy to the undoped chain peak. This peak comes from the local charge oscillations around the potential minima created by the impurity atom. The effect is especially pronounced for Ni-doped chains. In the multiple-chain case, we find an unusual hybridization of the two different (local and collective) plasmon modes. Changing the chain size and chemical composition in the array can be used to tune the absorption properties of nanochains. The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005221, ucf:50650
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005221
-
-
Title
-
MAGNETIC PROPERTIES OF SPUTTER DEPOSITED FE-BASED AMORPHOUS THIN FILMS FOR RESONATOR APPLICATION.
-
Creator
-
China, Chaitali, Coffey, Kevin, University of Central Florida
-
Abstract / Description
-
In this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was...
Show moreIn this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was characterized using secondary ion mass spectroscopy (SIMS). The physical thickness of the films was determined by use of a stylus profilometer. The M-H Looper studies indicated that the induced anisotropy (Hk) depends strongly on the nickel concentration as well as on the annealing conditions, specifically the time and temperature of the annealing process. For the same metalloid concentration, the induced anisotropy has a maximum as a function of Ni. For the same nickel concentration and annealing time, it was found that the value of Hk decreases with the increase in annealing temperature. For each composition studied, low temperature long time annealing showed a higher value of Hk compared to high temperature short time annealing. From the magnetostriction values of Fe80-xNixB20 alloys, it was found that the sputter deposited films show similar trend but differ in magnitude when compared with ribbon samples. The magnetostriction of annealed thin films is found to be representative of ribbon samples. A potential composition modification to improve the strength of the field induced anisotropy is the addition of low levels of Mn.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001275, ucf:46896
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001275
-
-
Title
-
Phonon Modulation by Polarized Lasers for Material Modification.
-
Creator
-
Chen, Sen-Yong, Kar, Aravinda, Vaidyanathan, Rajan, Harvey, James, Likamwa, Patrick, University of Central Florida
-
Abstract / Description
-
Magnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts,...
Show moreMagnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts, such as determining preferred MRI parameters, modifying magnetic field distribution, designing new structure and exploring new materials, have been made to reduce the induction heating. Improving the MRI-compatibility of implanted metallic devices by modifying the properties of the existing materials would be valuable.To evaluate the temperature rise due to RF induction heating on a metallic implant during MRI procedure, an electromagnetic model and thermal model are studied. The models consider the shape of RF magnetic pulses, interaction of RF pulses with metal plate, thermal conduction inside the metal and the convection at the interface between the metal and the surroundings. Transient temperature variation and effects of heat transfer coefficient, reflectivity and MRI settings on the temperature change are studied.Laser diffusion is applied to some titanium sheets for a preliminary study. An electromagnetic and thermal model is developed to choose the proper diffusant. Pt is the diffusant in this study. An electromagnetic model is also developed based on the principles of inverse problems to calculate the electromagnetic properties of the metals from the measured magnetic transmittance. This model is used to determine the reflectivity, dielectric constant and conductivity of treated and as-received Ti sheets. The treated Ti sheets show higher conductivity than the as-received Ti sheets, resulting higher reflectivity.A beam shaping lens system which is designed based on vector diffraction theory is used in laser diffusion. Designing beam shaping lens based on the vector diffraction theory offers improved irradiance profile and new applications such as polarized beam shaping because the polarization nature of laser beams is considered. Laser Pt diffusion are applied on the titanium and tantalum substrates using different laser beam polarizations. The concentration of Pt and oxygen in those substrates are measured using Energy Dispersive X-Ray Spectroscopy (EDS). The magnetic transmittance and conductivity of those substrates are measured as well. The effects of laser beam polarizations on Pt diffusion and the magnetic transmittance and conductivity of those substrates are studied. Treated Ti sheets show lower magnetic transmittance due to the increased conductivity from diffused Pt atoms. On the other hand, treated Ta sheets show higher magnetic transmittance due to reduced conductivity from oxidation. Linearly polarized light can enhance the Pt diffusion because of the excitation of local vibration mode of atoms.Laser Pt diffusion and thermo-treatment were applied on the Ta and MP35N wires. The Pt concentration in laser platinized Ta and MP35N wires was determined using EDS. The ultimate tensile strength, fatigue lives and lead tip heating in real MRI environment of those wires were measured. The lead tip hating of the platinized Ta wires is 42 % less than the as-received Ta wire. The diffused Pt increases the conductivity of Ta wires, resulting in more reflection of magnetic field. In the case of the platinized MP35N wire, the reduction in lead tip heating was only 1 (&)deg;C due to low concentration of Pt. The weaker ultimate tensile strength and shorter fatigue lives of laser-treated Ta and MP35N wires may attribute to the oxidation and heating treatment.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004500, ucf:49269
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004500
-
-
Title
-
Role of internal degrees of freedom in the quantum tunneling of the magnetization in single-molecule magnets.
-
Creator
-
Quddusi, Hajrah, Gonzalez Garcia, Enrique, Mucciolo, Eduardo, Klemm, Richard, Schoenfeld, Winston, University of Central Florida
-
Abstract / Description
-
The prominent features of single molecule magnets (SMMs), such as the quantum tunneling of the magnetization (QTM), are conventionally understood through the giant spin approximation (GSA) which considers the molecule as a single rigid spin. This model often requires the inclusion of high order anisotropy terms in the Hamiltonian, a manifestation of admixing of low lying excited states that can be more naturally understood by employing a multi-spin (MS) description i.e. considering the...
Show moreThe prominent features of single molecule magnets (SMMs), such as the quantum tunneling of the magnetization (QTM), are conventionally understood through the giant spin approximation (GSA) which considers the molecule as a single rigid spin. This model often requires the inclusion of high order anisotropy terms in the Hamiltonian, a manifestation of admixing of low lying excited states that can be more naturally understood by employing a multi-spin (MS) description i.e. considering the individual spins and the interactions between ions within the molecule. However, solving the MS Hamiltonian for high nuclearity molecules is not feasible due to the enormous dimensions of the associated Hilbert space that put it beyond the capability of existing computational resources. In contrast, low nuclearity systems permit the complete diagonalization of the MS Hamiltonian required to sample the effect of internal degrees of freedom, such as exchange interactions and single ion anisotropies, on the QTM. This dissertation focuses on the study of low nuclearity SMMs in view of understanding these subtle quantum effects. To accomplish this, we have developed a series of magnetic characterization techniques, such as integrated microchip sensors resulting from the combination of two dimensional electron gas (2DEG) Hall-Effect magnetometers and microstrip resonators, capable of performing measurements of magnetization and EPR spectroscopy simultaneously. The thesis bases on a comparative study of two low nuclearity SMMs with identical magnetic cores (Mn4 dicubane) but differing ligands. Notably, one of these SMMs lacked solvent molecules for crystallization; a characteristic that gives rise to extremely sharp resonances in the magnetization loops and whose basic QTM behavior can be well explained with the GSA. On the contrary, the second SMM exhibited mixed energy levels, making a MS description necessary to explain the observations. We have also examined the role of internal degrees of freedom on more subtle QTM phenomena, leading to the explanation of asymmetric Berry-phase interference patterns observed in a Mn4 SMM in terms of a competition between different intermolecular magnetic interactions, i.e. non-collinear zero-field splitting tensors and intramolecular dipolar interactions, resulting in astonishing manifestations of the structural molecular symmetry on the quantum dynamics of the molecular spin.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004790, ucf:49722
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004790
-
-
Title
-
BLOCK COPOLYMER STABILIZED SELF-ASSEMBLED MAGNETIC NANOPARTICLES.
-
Creator
-
ZHANG, LI, BELFIELD, KEVIN, University of Central Florida
-
Abstract / Description
-
Magnetic materials are currently being developed in the areas of pharmacology and medicinal chemistry for use in applications such as drug delivery and magnetic resonance imaging. Magnetic fluids are being used in audio equipment and hard disk drives. Their suspension in a particular fluid is promoted by the adsorption or reaction of steric or electrostatic stabilizers, which are appropriate for the particular medium. Critical to the success of these magnetic fluids is the development of the...
Show moreMagnetic materials are currently being developed in the areas of pharmacology and medicinal chemistry for use in applications such as drug delivery and magnetic resonance imaging. Magnetic fluids are being used in audio equipment and hard disk drives. Their suspension in a particular fluid is promoted by the adsorption or reaction of steric or electrostatic stabilizers, which are appropriate for the particular medium. Critical to the success of these magnetic fluids is the development of the steric stabilizers, which must prevent the coagulation of the metal particles. Polymeric materials are one of the most suitable nonmagnetic media to disperse the magnetic nanoparticles, forming polymeric nanocomposites in ferrofluids. We have developed strategies in molecular nanoscience to design polymeric systems for stabilization of magnetic nanoparticles. Ring opening metathesis polymerization (ROMP) was used to prepare a series of novel, well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene 2-carboxylic acid 2-cyanoethyl ester and bicyclo[2.2.1]hept-2-ene, consisting of both anchoring and steric stabilizing blocks. Both ester and cyano groups were incorporated into the polymers to chelate and stabilize the iron oxide magnetic nanoparticles. These polynorbornene-based copolymers were characterized by GPC, along with 1H NMR, FTIR, DSC, and TGA. Using diblock copolymers as stabilizers, nanostructured maghemite (ã-Fe2O3) magnetic ferrofluids were prepared in toluene or cyclohexanone via thermal decomposition of Fe(CO)5 and then the oxidation of iron nanoparticles. Transmission electron microscopic (TEM) images showed a highly crystalline structure of the ã-Fe2O3 nanoparticles, with average particle size varying from 5 to 7 nm. Polymer films containing iron oxide nanoclusters were also prepared from the diblock copolymers. For comparison, a commercial triblock copolymer (BASF PluronicR F127) surfactant was used to prepare stabilized ferrofluids. In addition to ã-Fe2O3 nanoparticles, other types of magnetic nanoparticles, such as FePt, were investigated using this triblock copolymer as a stabilizer. The results indicated that the norbornene diblock copolymers could also be used for the preparation of FePt stabilized magnetic ferrofluids in the future research work.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000230, ucf:46272
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000230
-
-
Title
-
MODELING AND ANALYSIS OF THE EDS MAGLEV SYSTEM WITH THE HALBACH MAGNET ARRAY.
-
Creator
-
Ko, Wonsuk, Ham, Chan, University of Central Florida
-
Abstract / Description
-
The magnetic field analysis based on the wavelet transform is performed. The Halbach array magnetic field analysis has been studied using many methods such as magnetic scalar potential, magnetic vector potential, Fourier analysis and Finite Element Methods. But these analyses cannot identify a transient oscillation at the beginning stage of levitation. The wavelet transform is used for analyzing the transient oscillatory response of an EDS Maglev system. The proposed scheme explains the under...
Show moreThe magnetic field analysis based on the wavelet transform is performed. The Halbach array magnetic field analysis has been studied using many methods such as magnetic scalar potential, magnetic vector potential, Fourier analysis and Finite Element Methods. But these analyses cannot identify a transient oscillation at the beginning stage of levitation. The wavelet transform is used for analyzing the transient oscillatory response of an EDS Maglev system. The proposed scheme explains the under-damped dynamics that results from the cradle's dynamic response to the irregular distribution of the magnetic field. It suggests this EDS Maglev system that responds to a vertical repulsive force could be subject to such instability at the beginning stage of a low levitation height. The proposed method is useful in analyzing instabilities at the beginning stage of levitation height. A controller for the EDS maglev system with the Halbach array magnet is designed for the beginning stage of levitation and after reaching the defined levitation height. To design a controller for the EDS system, two different stages are suggested. Before the object reaches a stable position and after it has reached a stable position. A stable position can be referred to as a nominal height. The former is the stage I and the latter is the stage II. At the stage I, to achieve a nominal height the robust controller is investigated. At the stage II, both translational and rotational motions are considered for the control design. To maintain system stability, damping control as well as LQR control are performed. The proposed method is helpful to understand system dynamics and achieve system stability.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001697, ucf:47196
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001697
-
-
Title
-
SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR.
-
Creator
-
Zheng, Liping, Sundaram, Kalpathy, University of Central Florida
-
Abstract / Description
-
This dissertation is concerned with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed the motor to have an efficiency reaching above 92%. This achieved efficiency indicated a significant improvement compared to commercial...
Show moreThis dissertation is concerned with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed the motor to have an efficiency reaching above 92%. This achieved efficiency indicated a significant improvement compared to commercial motors with similar ratings. This dissertation first discusses the basic concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided. Particular design strategies have to be adopted for super-high speed applications since motor losses assume a key role in the motor drive performance limit. The considerations of the PMSM structure for cryogenic applications are also discussed. It is shown that slotless structure with multi-strand Litz-wire is favorable for super-high speeds and cryogenic applications. The design, simulation, and test of a single-sided axial flux pancake PMSM is presented. The advantages and disadvantages of this kind of structure are discussed, and further improvements are suggested and some have been verified by experiments. The methodologies of designing super high-speed motors are provided in details. Based on these methodologies, a super high-speed radial-flux PMSM was designed and fabricated. The designed PMSM meets our expectation and the tested results agree with the design specifications. 2-D and 3-D modeling of the complicated PMSM structure for the electromagnetic numerical simulations of motor performance and parameters such as phase inductors, core losses, rotor eddy current loss, torque, and induced electromotive force (back-EMF) are also presented in detail in this dissertation. Some mechanical issues such as thermal analysis, bearing pre-load, rotor stress analysis, and rotor dynamics analysis are also discussed. Different control schemes are presented and suitable control schemes for super high- speed PMSM are also discussed in detail.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000762, ucf:46562
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000762
Pages