Current Search: nitrogen (x)
Pages
-
-
Title
-
Characterizing biogeochemical shifts in two Salix Caroliniana Michx. encroached freshwater subtropical marshes.
-
Creator
-
Ho, Janet, Chambers, Lisa, Hinkle, Ross, Savage, Anna, University of Central Florida
-
Abstract / Description
-
Shrub encroachment is a common disturbance in wetlands, but little is known about how shrub encroachment impacts functions such as carbon (C) storage and nitrogen (N) cycling. The objective of this thesis was to identify differences in physiochemical properties (within soil, water and leaf tissue) and biogeochemical processes (soil respiration, enzyme activity, litter decomposition, and N cycling) in two subtropical freshwater marshes encroached by coastal plain willow (Salix caroliniana...
Show moreShrub encroachment is a common disturbance in wetlands, but little is known about how shrub encroachment impacts functions such as carbon (C) storage and nitrogen (N) cycling. The objective of this thesis was to identify differences in physiochemical properties (within soil, water and leaf tissue) and biogeochemical processes (soil respiration, enzyme activity, litter decomposition, and N cycling) in two subtropical freshwater marshes encroached by coastal plain willow (Salix caroliniana Michx.). Two study regions (Moccasin Island and Lake Apopka) were selected because of their location in the St. John's River watershed and their unique histories and hydroperiod, allowing for an investigation of how synonymous the effects of willow-encroachment are across sites. A stratified random sampling design was employed in each region, identifying three plot types: willow ((>)80 % willow aboveground coverage), adjacent marsh ((>)80% herbaceous aboveground coverage and (<)1 m from willows), and control marsh ((>)80% herbaceous aboveground coverage and (>)10 m from willows) plots. Triplicate soil samples were collected in each plot in the wet and dry seasons of 2017 and analyzed for physiochemical properties (bulk density, moisture, nutrient content) and used in laboratory assays to measure soil respiration, enzyme activity, and potential N mineralization and denitrification rates. Leaf tissue was collected from the dominant vegetation in each plot and analyzed for nutrient content (total C, lignin-C, and total N). Short-term litter decay rate was determined using a litter-bag field experiment. Bioavailable N and dissolved organic C (DOC) concentrations were determined from surface and porewater collected from the center of each plot. In Moccasin Island, lower decomposition rates and greater denitrification, potential N mineralization, and soil C and N content were detected in willow and adjacent marsh plots, suggesting greater C storage and N cycling in willow-encroached marshes compared to non-encroached control marshes in Moccasin Island. Conversely, soil C and N content was lowest in willow plots in Lake Apopka. Decomposition and microbial activity (enzyme activity and respiration) were lowest in willow dominated areas and correlated to soil nutrient concentrations. In both regions, microbial compositional changes (gene copy number) were detected between plot types, mainly in bacteria (?-proteobacteria and Bacteroidetes) for Moccasin Island and archaea and fungi abundance in Lake Apopka. Ultimately, willow plots in both regions had greater lignin-C content and short-term litter C storage. Greater bioavailable N was also observed in adjacent and/or willow plots in both regions. However, soil C storage and N cycling differences were not synonymous between the two regions. Future studies of willow effects will need to look at multiple sites or risk making inaccurate generalizations. From the findings from this study, wetland processes can be altered in willow-encroached marshes and this data can help land managers decide where to allocate resources based on valued ecosystem services.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007015, ucf:52043
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007015
-
-
Title
-
IN-SITU AMMONIA REMOVAL OF LEACHATE FROM BIOREACTOR LANDFILLS.
-
Creator
-
Berge, Nicole, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
A new and promising trend in solid waste management is to operate the landfill as a bioreactor. Bioreactor landfills are controlled systems in which moisture addition and/or air injection are used as enhancements to create a solid waste environment capable of actively degrading the biodegradable organic fraction of the waste. Although there are many advantages associated with bioreactor landfills, some challenges remain. One such challenge is the ammonia-nitrogen concentration found in the...
Show moreA new and promising trend in solid waste management is to operate the landfill as a bioreactor. Bioreactor landfills are controlled systems in which moisture addition and/or air injection are used as enhancements to create a solid waste environment capable of actively degrading the biodegradable organic fraction of the waste. Although there are many advantages associated with bioreactor landfills, some challenges remain. One such challenge is the ammonia-nitrogen concentration found in the leachate. The concentrations of ammonia-nitrogen tend to increase beyond concentrations found in leachate from conventional landfills because recirculating leachate increases the rate of ammonification and results in accumulation of higher levels of ammonia-nitrogen concentrations, even after the organic fraction of the waste is stabilized. Because ammonia-nitrogen persists even after the organic fraction of the waste is stabilized, and because of its toxic nature, it is likely that ammonia-nitrogen will determine when the landfill is biologically stable and when post-closure monitoring may end. Thus an understanding of the fate of nitrogen in bioreactor landfills is critical to a successful and economic operation. Ammonia-nitrogen is typically removed from leachate outside of the landfill. However, additional costs are associated with ex-situ treatment of ammonia, as separate treatment units on site must be maintained or the leachate must be pumped to a publicly owned wastewater treatment facility. Therefore, the development of an in-situ nitrogen removal technique would be an attractive alternative. Several recent in-situ treatment approaches have been explored, but lacked the information necessary for field-scale implementation. The objectives of this study were to develop information necessary to implement in-situ ammonia removal at the field-scale. Research was conducted to evaluate the kinetics of in-situ ammonia removal and to subsequently develop guidance for field-scale implementation. An aerobic reactor and microcosms containing digested municipal solid waste were operated and parameters were measured to determine nitrification kinetics under conditions likely found in bioreactor landfills. The environmental conditions evaluated include: ammonia concentration (500 and 1000mg N/L), temperature (25o, 35o and 45oC), and oxygen concentration in the gas-phase (5, 17 and 100%). Results suggest that in-situ nitrification is feasible and that the potential for simultaneous nitrification and denitrification in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data were fitted to the Monod equation, resulting in an equation that describes the impact of pH, oxygen concentration, ammonia concentration, and temperature on ammonia removal. In order to provide design information for a field-scale study, a simple mass balance model was constructed in FORTRAN to forecast the fate of ammonia injected into a nitrifying portion of a landfill. Based on model results, an economic analysis of the in-situ treatment method was conducted and compared to current ex-situ leachate treatment costs. In-situ nitrification is a cost effective method for removing ammonia-nitrogen when employed in older waste environments. Compared to reported on-site treatment costs, the costs associated with the in-situ ammonia removal process fall within and are on the lower end of the range found in the literature. When compared to treating the leachate off-site, the costs of the in-situ ammonia removal process are always significantly lower. Validation of the laboratory results with a field-scale study is needed.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000963, ucf:46695
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000963
-
-
Title
-
STABLE CARBON AND NITROGEN ISOTOPE ANALYSES OF SUBFOSSIL RATS FROM LIANG BUA (FLORES, INDONESIA).
-
Creator
-
Anderson, Kelly, Dupras, Tosha, University of Central Florida
-
Abstract / Description
-
This research study investigated the level of bone collagen preservation of rat femora from Liang Bua cave on the island of Flores, Indonesia, as well as conducted carbon and nitrogen stable isotopic analyses on well preserved samples. Although Flores is located in a hot intermediate tropical zone and the burial environment of the bone samples within the cave is considered less than optimal for collagen preservation, significant preservation of the bone collagen was found. Collagen yields, C...
Show moreThis research study investigated the level of bone collagen preservation of rat femora from Liang Bua cave on the island of Flores, Indonesia, as well as conducted carbon and nitrogen stable isotopic analyses on well preserved samples. Although Flores is located in a hot intermediate tropical zone and the burial environment of the bone samples within the cave is considered less than optimal for collagen preservation, significant preservation of the bone collagen was found. Collagen yields, C:N ratio and carbon and nitrogen concentrations were investigated. However, this research study argues that carbon and nitrogen concentrations are an appropriate means to determine preservation on its own. According to the carbon and nitrogen concentration data 32 samples were considered well preserved. Carbon and nitrogen stable isotopic analyses were conducted on the 32 preserved samples. According to the carbon data a significant shift in the [delta]13C values from a C3 signature to a C4 signature occurred prior to 2,750 years ago. This shift is indicative of the introduction of a non-endemic C4 plant, which is believed to be either foxtail millet or sugarcane. Since this shift occurs abruptly it indicates that the introduction of agriculture to Flores occurred at one time and has continued to present day.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003894, ucf:48748
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003894
-
-
Title
-
STORMWATER IRRIGATION OF SAINT AUGUSTINE GRASS:NITROGEN BALANCE AND EVAPOTRANSPIRATION.
-
Creator
-
Hulstein, Ewoud, Wanielista, Martin, University of Central Florida
-
Abstract / Description
-
A change in surface condition of a watershed, which is usually caused by development, can have measured effects on the naturally occurring hydrologic cycle and nitrogen cycle. This could result in environmental problems, such as reduced springflow and eutrophication. In an effort to address these issues, a combination of best management practices (BMPs) can be adhered to. The practice of using excess stormwater as a source for irrigation is proposed as a BMP for the minimization of impacts by...
Show moreA change in surface condition of a watershed, which is usually caused by development, can have measured effects on the naturally occurring hydrologic cycle and nitrogen cycle. This could result in environmental problems, such as reduced springflow and eutrophication. In an effort to address these issues, a combination of best management practices (BMPs) can be adhered to. The practice of using excess stormwater as a source for irrigation is proposed as a BMP for the minimization of impacts by development to the hydrologic and nitrogen cycles. To study the proposed BMP, a field experiment was installed in an outdoor location on the UCF main campus in Orlando, Florida. The experiment consists of three soil chambers, (2x2x4 ft, L:W:H), filled with compacted soil and covered with St. Augustine grass to simulate a suburban lawn. The grass was irrigated up to twice a week with detained stormwater with a nitrate nitrogen concentration of up to 2 mg/L. A mass balance and a total nitrogen balance were performed to determine evapotranspiration (ET) and impacts on groundwater nitrogen content. It was determined that the groundwater characteristics are largely dependent on the characteristics of the soil. The input nitrogen (precipitation and irrigation) was mostly in the form of nitrate and the output nitrogen (groundwater) was mostly in the form of ammonia. A total nitrogen mass balance indicated the mass output of nitrogen was significantly larger than mass input of nitrogen, which was due to ammonia leaching from the soil. Only small concentrations of nitrate were detected in the groundwater, resulting in an estimated nitrate removal (conversion to ammonia) of 97 percent at a depth of four feet when the input nitrate concentration was 2 mg/L. The average ET of the three chambers was compared to the estimated ET from the modified Blaney-Criddle equation on a monthly basis and a yearly basis. The modified Blaney-Criddle equation was proven to be accurate for estimating the actual ET for this application: irrigated St. Augustine grass in the Central Florida climate. In conclusion, using the available literature and the data collected from the field experiment, it was shown through an example design problem that the proposed BMP of using excess stormwater as a source for irrigation can help achieve a pre- versus postdevelopment volume balance and can help control post-development nitrate emissions.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000611, ucf:46511
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000611
-
-
Title
-
Long-term Carbon and Copper Impact on Nutrient Removal via Green Sorption Media in Dynamic Linear Ditch Environments.
-
Creator
-
Ordonez, Diana, Chang, Ni-bin, Randall, Andrew, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Nutrient-laden stormwater runoff causes environmental and ecological impacts on receiving water bodies. Biosorption Activated Media (BAM) composed of the sand, tire crumb, and clay have been implemented in stormwater best management practices due to its ability to efficiently remove nutrients from stormwater runoff, such as in roadside linear ditches, via unique chemophysical and microbiological processes. In this study, a set of fixed-bed columns were set up to simulate some external forces...
Show moreNutrient-laden stormwater runoff causes environmental and ecological impacts on receiving water bodies. Biosorption Activated Media (BAM) composed of the sand, tire crumb, and clay have been implemented in stormwater best management practices due to its ability to efficiently remove nutrients from stormwater runoff, such as in roadside linear ditches, via unique chemophysical and microbiological processes. In this study, a set of fixed-bed columns were set up to simulate some external forces in roadside linear ditches and examine how these external forces affect the performance of BAM. In our experiment, scenario 1 simulates the impact that animals such as tortoises, moles and ants produce conduits on the top layer of BAM. Scenario 2 simulates the presence of animals on BAM, together with external compaction. Finally, scenario 3 simulates external compaction such as traffic compaction alone. Furthermore, two baseline conditions were included to sustain the impact assessment of these three scenarios, respectively. They are the long-term presence of carbon in stormwater as carbon can be transported by stormwater runoff from neighboring crop fields, and the long-term presence of copper ions in stormwater as copper depositions can also be found because of electrical wiring, roofing, stormwater ponds disinfection and automobile brake pads in transportation networks. This systematic assessment encompasses some intertwined field complexity in real world systems driven by different hydraulic conditions, microbial ecology, Dissolved Organic Nitrogen (DON) reshape/removal, and long-term addition of carbon and copper (alone) on the effectiveness of total nitrogen removal. The removal efficiencies are substantially linked to varying microbial processes including mineralization, ammonification, nitrification, denitrification, and even dissimilatory nitrate reduction to ammonium, each of which is controlled by different dominant microbial species. The identification of DON compounds at the molecular level was done via a Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-IR-MS) whereas the quantitation of microbial species was done by using quantitative Polymerase Chain Reaction (qPCR). The results from the interactions between microbial ecology and DON decomposition were compared to the external forces and baseline conditions to obtain a holistic understanding of the removals efficiencies of total nitrogen. With the aid of qPCR and FT-IR-MS, this study concluded that the long-term presence of carbon is beneficial for nutrient removal whereas the long-term copper addition inhibits nutrient removal.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007847, ucf:52816
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007847
-
-
Title
-
PILOT STUDY OF NUTRIENT LOADING IN A WET DETENTION LAKE.
-
Creator
-
Gurr, Eric, Nnadi, Fidelia, University of Central Florida
-
Abstract / Description
-
Florida is surrounded by water, and its many internal lakes and rivers have long been recognized for their excellent fishing and boating. This notoriety draws land developers to the lake shores to establish residential and commercial infrastructure. This land development brings with it flood plain alteration, water level stabilization, and increased nutrients which cause adverse impacts to our lakes. In response, the United States Environmental Protection Agency (EPA) passed the Federal Clean...
Show moreFlorida is surrounded by water, and its many internal lakes and rivers have long been recognized for their excellent fishing and boating. This notoriety draws land developers to the lake shores to establish residential and commercial infrastructure. This land development brings with it flood plain alteration, water level stabilization, and increased nutrients which cause adverse impacts to our lakes. In response, the United States Environmental Protection Agency (EPA) passed the Federal Clean Water Act (CWA) in 1972 which set the framework for the water quality standards for the entire United States. As a result of the CWA many point sources were eliminated, but in the process it became apparent that nonpoint source loads represented even more of a threat. To further study the physical and chemical characteristics of urban runoff the Nationwide Urban Runoff Program (NURP) was established in 1978. This research lead to a series of management options, named Best Management Practices (BMPs) which proposed various structural and non-structural methods to reduce nutrient loads. But the research and data collection on the effectiveness of these systems to remove nutrients is in its infancy. The main objective of this study was to generate accurate and effective water quality and water quantity data that future stormwater management decisions can be based upon. More specific, this study established automatic monitoring sites throughout the City of Kissimmee, Florida to determine the pollutant loadings into the tributaries of Lake Tohopekaliga. These monitoring sites are located such that inflows from outside the city limits can be isolated and external pollutant loads quantified. Also, additional internal monitoring sites were established to determine the pollutant loads of internal sections of the city. Data from these internal monitoring sites will also be used to determine the variable pollutant removal efficiencies and hydraulic fluctuations of natural, irregular riverine systems. The secondary objective of this study was to perform a pilot study using the discrete grab samples in tandem with the continuous hydraulic and hydrologic data from the monitoring stations. An existing lake within the project limits was chosen for the pilot study area. Monitoring stations are located at the influent and effluent sections of the lake which provided data on the hydraulic and hydrologic parameters. The pilot study determined the nutrient loads to and from the lake and checked for any seasonal variations in pollutant loading or removal efficiencies. For the purpose of this pilot study, only total nitrogen and total phosphorous were examined for two monitoring sites. The nutrient removal efficiency was performed using both the event mean concentration method and the summation of loads method to check for seasonal variation. There were no storm event concentrations available for used in this analysis, however, there were 25 discrete grab samples collected on a bi-monthly basis over a twelve month period. This data was used with corresponding five-minute rainfall and flow data from both the inflow and outflow points. The results of this study did not reveal any seasonal variation in the nutrient concentrations either flowing into or out from the lake. Although there were some relatively lower values in late spring, the concentration levels of total nitrogen did not seem to vary significantly from its mean value of 0.90 mg/l throughout the year. The concentration levels of total phosphorus did range from 0.02 mg/l to 0.48 mg/l, but not in relation to either season or flow volume fluctuations. The lake showed no net removals of total nitrogen and was actually found to be releasing total phosphorus to the downstream receiving waters. The findings of this study are limited due to the fact that the period of pilot study was only for twelve months and there were no rainfall events used in the analysis. Rainfall events are typically high sources of nutrient loads to a lake. The lower efficiencies were probably due to missing the actual higher nutrient load concentrations during the rainfall event. However, even considering the lack of event data, the nutrient removal efficiency for the pond was still low. This analysis did serve well as a basis for performing future analysis once additional data, including rainfall events, has been collected.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001912, ucf:47474
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001912
-
-
Title
-
Landscaping Perceptions and Behaviors: Socio-ecological Drivers of Nitrogen in the Residential Landscape.
-
Creator
-
Souto, Leesa, Hinkle, Charles, Canan, Penelope, Noss, Reed, Weishampel, John, Pals, Heili, University of Central Florida
-
Abstract / Description
-
Driven by individual influences such as beliefs, attitudes, personal norms, and abilities, as well as by social influences like community norms, mandates, and the market, suburban homeowners are motivated to select and maintain a turf grass landscape. In many areas of Florida, effective suburban lawn maintenance requires regular inputs of nitrogenous fertilizer, some of which is lost to the environment, contributing to water quality degradation and ecosystem dysfunction. Reducing nitrogen...
Show moreDriven by individual influences such as beliefs, attitudes, personal norms, and abilities, as well as by social influences like community norms, mandates, and the market, suburban homeowners are motivated to select and maintain a turf grass landscape. In many areas of Florida, effective suburban lawn maintenance requires regular inputs of nitrogenous fertilizer, some of which is lost to the environment, contributing to water quality degradation and ecosystem dysfunction. Reducing nitrogen inputs to aquatic systems requires a better understanding of the links between residential landscape management and the potential for fertilizer loss. This dissertation examines the linkages between the human behaviors contributing nitrogen to the suburban landscape and the resulting environmental impacts. Framed in socio-psychological theory and social marketing research, the outcomes of this dissertation contribute much needed information to the growing realm of interdisciplinary science that expands integrative theory, develops mixed methods, utilizes spatial and temporal analyses, and conducts actionable research.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004604, ucf:49931
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004604
-
-
Title
-
Application of Landfill Treatment Approaches for the Stabilization of Municipal Solid Waste.
-
Creator
-
Bolyard, Stephanie, Reinhart, Debra, Santra, Swadeshmukul, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
This research focused on the fundamental requirements of stabilizing a mature landfill using three treatment approaches as well as the implications of discharging leachate organic matter (LOM) to wastewater treatment plants (WWTPs). Three treatment approaches aimed at removing releasable carbon and nitrogen from mature landfills including flushing with clean water, leachate recirculation with ex-situ chemical oxidation, and leachate recirculation with ex-situ chemical oxidation and in-situ...
Show moreThis research focused on the fundamental requirements of stabilizing a mature landfill using three treatment approaches as well as the implications of discharging leachate organic matter (LOM) to wastewater treatment plants (WWTPs). Three treatment approaches aimed at removing releasable carbon and nitrogen from mature landfills including flushing with clean water, leachate recirculation with ex-situ chemical oxidation, and leachate recirculation with ex-situ chemical oxidation and in-situ aeration were evaluated. After extensive treatment of the waste in the flushing bioreactor (FB) scenarios, the overall biodegradable fraction was reduced relative to mature waste. Leachate quality improved for all FBs but through different mechanisms. Flushing was the most effective approach at removing biodegradable components and improving leachate quality. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste. Solid waste and leachate samples from the anaerobic bioreactors and FBs were characterized using Fourier Transform Infrared (FTIR) to provide a better understanding of changes in waste characteristics when waste transitions from mature to stabilized. Organic functional groups associated with aliphatic methylene were present in leachate and solid waste samples during the early stages of anaerobic degradation and disappeared once these wastes underwent treatment. Once the waste was stabilized, the FTIR spectra of leachate and solid waste were dominated by inorganic functional groups (carboxylic acid/carbonate group, carbonate, quartz, and clay minerals). Leachate is commonly co-treated with domestic wastewater due to the cost and complexity of on-site treatment. The organic constituents in leachate can be problematic for WWTPs as their recalcitrant components pass through conventional treatment processes, impacting effluent quality. Twelve leachates where characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was 1,160 and 40.7 mg/L, respectively. Leachates were fractionated based on hydrophobic (recalcitrant; rDON) and hydrophilic (bioavailable; bDON) properties. The average concentrations of bDON and rDON were 16.5 and 18.4 mg/L, respectively. Multiple leachate and wastewater co-treatment simulations were carried out to assess the treatment of leachate nitrogen at historic nitrogen removal levels of four WWTPs and the effects on wastewater effluent quality for four WWTPs. The effluent quality exceeded typical TN limits of 3 to 10 mg/L at leachate volumetric contributions of 10%. The maximum calculated pass through concentrations of rDON and DON at 10% volumetric contribution for the twelve leachates was 4.77 and 9.71 mg/L, respectively. The effects of LOM on wastewater effluent quality was further evaluated in the field. Results showed that leachate detection for each field study could be determined using UV254 nm absorbance. DON and dissolved organic carbon (DOC) concentrations increased at significant levels in leachate-impacted wastewater samples. The DON decreased through the treatment train, suggesting that this parameter was effectively removed, while DOC persisted. DOC pass through coincided with an increase in color and UV254 nm absorption. In effluents, the UV254 nm transmittance was just below the minimum 65% disinfection requirement at dilutions greater than 1%. Leachate-impacted wastewater showed a higher concentration of humic-like peaks during fluorescence measurements than wastewater without leachate.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006076, ucf:50959
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006076
-
-
Title
-
REMOVAL OF REFRACTORY TKN FROM AN EFFLUENT WASTEWATER USING SODIUM FERRATE.
-
Creator
-
Lettie, Lucia, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
This research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent...
Show moreThis research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent biological processes. Bench-scale experiments were performed on effluent samples taken prior to chlorination from an Orlando, FL wastewater treatment facility, using a biological nutrient removal process. The samples were treated with doses of ferrate ranging from 1 to 50 mg/L as FeO42 under unbuffered conditions. TKN removal as high as 70% and COD removal greater than 55% was observed. The TSS production after ferrate treatment was in a range of 12 to 200 mg/L for doses between 10 and 50 mg/L FeO4-2. After an optimum dose of ferrate was determined, three bench-scale reactors were operated under anoxic conditions for 10 to 12 days, two as duplicates containing the treated effluent and one as a control with untreated sample. Two different doses of ferrate were used as optimum dose for these experiments, 10 and 25 mg/L as FeO4-2. The purpose of these reactors was to determine the potential for biological removal of remaining nitrogen after ferrate oxidation of refractory nitrogen. Treated and raw samples were analyzed for Total Kjeldahl Nitrogen (TKN) (filtered and unfiltered), chemical oxygen demand (COD) (filtered and unfiltered), total suspended solids (TSS), nitrate (NO3-N), nitrite (NO2-N), and heterotrophic plate count (HPC). As a result, more than 70% of the soluble TKN was removed by chemical and biological oxidation for a sample treated with a dose of 25 mg/L FeO4-2, and less than 50% when treated with 10 mg/L FeO4-2. For the control samples run parallel to the ferrate treated samples, a maximum of 48% of soluble TKN and a minimum of 12% was removed. A three-log increase was observed in heterotrophic bacteria numbers for both doses during the operation of the reactors. Sodium ferrate was found to be an effective oxidant that can enhance the biodegradability of recalcitrant TKN present in municipal wastewaters. As mentioned before this research was develop using batch reactor units at bench-scale, therefore it is recommended to follow the investigation of the biodegradability of recalcitrant TKN of a ferrate treated sample under continuous flow conditions so that results can be extrapolated to a full-scale treatment facility.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001247, ucf:46936
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001247
-
-
Title
-
MICRO-SPECTROSCOPY OF BIO-ASSEMBLIES AT THE SINGLE CELL LEVEL.
-
Creator
-
Kera, Jeslin, Chakrabarti, Debopam, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 ?m in the lateral and 3.6 ?m in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation...
Show moreIn this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 ?m in the lateral and 3.6 ?m in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single live cells and bio-molecules with less than 10^9 molecules in the probe volume. Employing a multichannel detection system, the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. We also extend the spectral range from the visible range to the experimentally more challenging ultra-violet region where characteristic absorption bands of bio-molecules are observed. Exploiting the ultra-violet range, amino acids, nucleic acids solutions, and plant cells are investigated. We measure the spatially resolved absorption spectra at the nucleus of an onion cell and cytoplasm to probe DNA base-pair absorption. Small variations in our micro-absorption data are seen around 260 nm, possibly due to the abundance of DNA in the nucleus. This thesis contributes to the goal of spectroscopic identification of spatial heterogeneities at the single cell level and the label-free detection of proteins and nucleic acids.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFH2000356, ucf:45905
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000356
-
-
Title
-
A 2009 MOBILE SOURCE EMISSIONS INVENTORY OF THE UNIVERSITY OF CENTRAL FLORIDA.
-
Creator
-
Clifford, Johanna, Cooper, David, University of Central Florida
-
Abstract / Description
-
This thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non...
Show moreThis thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non-road equipment such as lawnmowers, leaf blowers, small maintenance vehicles, and other such equipment utilized on campus contributes to a significant portion to the total emissions from the university. UCF has recently become the second largest university in the nation (with over 56,000 students enrolled in the fall 2010 semester), and contributes significantly to VOC, NOx, and CO2 emissions in Central Florida area. In this project, students, faculty, staff, and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type, and age distribution of the personal vehicles of students, faculty, administration, and staff as well as their bus, car-pool, and alternate transportation usage. The EPA approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from non-road equipment and on campus UCF fleet vehicles. The results of the UCF mobile source emissions inventory are reported and compared to a recently completed emissions inventory for the entire three-county area in Central Florida.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003923, ucf:48704
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003923
-
-
Title
-
Monitoring Crystal Structure Refinements Using Solid-State NMR Chemical Shift Tensors.
-
Creator
-
Kalakewich, Keyton, Harper, James, Campiglia, Andres, Elsheimer, Seth, Chumbimuni Torres, Karin, Masunov, Artem, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Inclusion of lattice-fields in density functional theory (DFT) methods has enabled the accurate calculation of solid-state nuclear magnetic resonance (SSNMR) chemical shift tensors. Calculated 13C and 15N tensors (i.e. 3 principle values per nucleus) can be used to monitor crystal structure refinements and to select the correct structure from a large population of computationally generated candidates. In this dissertation, chapter 2 describes a methodology to improve established crystal...
Show moreInclusion of lattice-fields in density functional theory (DFT) methods has enabled the accurate calculation of solid-state nuclear magnetic resonance (SSNMR) chemical shift tensors. Calculated 13C and 15N tensors (i.e. 3 principle values per nucleus) can be used to monitor crystal structure refinements and to select the correct structure from a large population of computationally generated candidates. In this dissertation, chapter 2 describes a methodology to improve established crystal structures from three different diffraction techniques involving geometric refinement monitored using SSNMR tensor values. The calculated 13C tensors for three relatively simple organic compounds (i.e. acetaminophen, naphthalene, and adenosine) are shown to markedly improve upon DFT refinement. The so-called GGA-PBE functional provided the best agreement with experimental data. The use of the three principle values of the tensor is required for such results as the average (i.e. the isotropic) is less accurate. Chapter 3 applies this method to differentiate between hundreds of computationally predicted crystal structures. Typically, lattice energy of each candidate is used to select the correct structure, a process which is seldom successful. Herein, it is demonstrated that when 13C tensors from DFT refined structures are used for structural ranking by comparison to experimental data, only the correct structure agrees with experimental data in all cases. Chapter 4 illustrates the use of 15N tensors to monitor DFT refinement as an alternative to the 13C approach of Chapter 2. 15N tensors have been very difficult to obtain previously, thus a novel experimental method is developed here which improves signal-to-noise by as much as 300% and allows routine measurement. This improvement also improves the accuracy of the tensor values. Overall, the 15N tensors are found to be at least 5 times more sensitive to DFT refinements than 13C values.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006888, ucf:51726
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006888
-
-
Title
-
Migratory connectivity and carry-over effects in Northwest Atlantic loggerhead turtles (Caretta caretta, L.).
-
Creator
-
Ceriani, Simona, Weishampel, John, Ehrhart, Llewellyn, Walters, Linda, Quintana-Ascencio, Pedro, Roth, James, Valdes, Eduardo, University of Central Florida
-
Abstract / Description
-
Migration is a widespread and complex phenomenon in nature that has fascinated humans for centuries. Connectivity among populations influences their demographics, genetic structure and response to environmental change. Here, I used the loggerhead turtle (Caretta caretta, L.) as a study organism to address questions related to migratory connectivity and carry-over effects using satellite telemetry, stable isotope analysis and GIS interpolation methods. Telemetry identified foraging areas...
Show moreMigration is a widespread and complex phenomenon in nature that has fascinated humans for centuries. Connectivity among populations influences their demographics, genetic structure and response to environmental change. Here, I used the loggerhead turtle (Caretta caretta, L.) as a study organism to address questions related to migratory connectivity and carry-over effects using satellite telemetry, stable isotope analysis and GIS interpolation methods. Telemetry identified foraging areas previously overlooked for loggerheads nesting in Florida. Next, I validated and evaluated the efficacy of intrinsic markers as a complementary and low cost tool to assign loggerhead foraging regions in the Northwest Atlantic Ocean (NWA), using both a spatially implicit and spatially explicit (isoscapes) approach. I then focused on the nesting beaches and developed a common currency for isotopic studies based on unhatched eggs, which provide a non-invasive and non-destructive method for more extensive sampling to elucidate isotopic patterns across broader spatiotemporal scales. Lastly, I found that intra-population variations in foraging strategies affect annual and long-term reproductive output of loggerheads nesting in Florida. Understanding geospatial linkages is critical to the fostering of appropriate management and conservation strategies for migratory species. My multi-faceted approach contributes to the growing body of literature exploring migratory connectivity and carry-over effects.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005470, ucf:50390
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005470
-
-
Title
-
The Fate of Nitrogen and Phosphorus from a SImulated Highway Cross-Section.
-
Creator
-
Wasowska, Zuzanna, Chopra, Manoj, Randall, Andrew, Wang, Dingbao, University of Central Florida
-
Abstract / Description
-
Nutrient pollution as a result of excessive fertilizer application is of major concern for Florida's water resources. Excess fertilizer can be lost either via surface runoff or by leaching through the soil mass eventually reaching water bodies and leading to eutrophication. The focus of this study is to analyze the effect of low rainfall intensities and overland flow from an adjacent roadway surface on the loss of nutrients from two different fertilizers. This study focuses on the fate of the...
Show moreNutrient pollution as a result of excessive fertilizer application is of major concern for Florida's water resources. Excess fertilizer can be lost either via surface runoff or by leaching through the soil mass eventually reaching water bodies and leading to eutrophication. The focus of this study is to analyze the effect of low rainfall intensities and overland flow from an adjacent roadway surface on the loss of nutrients from two different fertilizers. This study focuses on the fate of the nitrogen and phosphorus present in fertilizers utilized by the Florida Department of Transportation for the stabilization of highway embankments. This research was performed on a field-scale test bed and rainfall simulator located at the Stormwater Management Academy at the University of Central Florida.The loss of nutrients was measured from two soil and sod combinations typically found in Florida and used for highway stabilization (-)Pensacola Bahia on AASHTO A-2-4 soil and Argentine Bahia on AASHTO A-3 soil. Two different fertilizers were analyzed, an all-purpose, quick-release 10-10-10 (N-P-K) fertilizer previously used by FDOT, and the new slow-release 16-0-8 (N-P-K) fertilizer, both applied at a rate of 0.5 lb/1000 ft2 consistent with FDOT's practice. Each combination was analyzed under two rainfall intensities: 0.1 in/hr and 0.25 in/hr at a slope consistent with typical highway cross-sections found in Florida. Nutrient losses were measured by collection of runoff and/or baseflow that escaped the test bed. Additionally, from the soil samples collected throughout the testing period, the mass of the nutrients was compared to the mass balances values based on literature from a previous study on fertilizers performed at the Stormwater Management Academy.The experimental findings of this study showed that there was a reduction in total nitrogen and total phosphorus on both A-2-4 soil and A-3 soil at the 0.25 in/hr intensity as a result of switching to the slow-release 16-0-8 (N-P-K) fertilizer. Results from the 0.1 in/hr rainfall intensity, which were available only for the A-2-4 soil, showed that at this intensity there was no apparent benefit to the switch in fertilizers. Furthermore, it was found that less total nitrogen and total phosphorus was lost from A-3 soil than A-2-4 soil at 0.25 in/hr when using 10-10-10 (N-P-K). At 0.1 in/hr, there was no apparent difference in total nitrogen lost. However, less total phosphorus was lost at this intensity. The results of this study showed that there is an environmental benefit to applying slow-release fertilizers. This was more significant for the 0.25 in/hr intensity than the 0.1 in/hr intensity at which no apparent benefit was found. In addition, it was found that runoff was a greater source of nutrient loss than baseflow, although baseflow losses were substantial. Furthermore, it was found that total nitrogen tends to be lost via both pathways of runoff and baseflow while phosphorus has a lower tendency to leach through the soil but readily runs off the soil surface. It was also observed that because fresh sod tends to be heavily fertilized, applications of fertilizer could be reduced or avoided entirely after sod placement and applied as needed.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005440, ucf:50401
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005440
-
-
Title
-
Biochemical Characterization of the NifB Enzyme and NifB-cofactor.
-
Creator
-
Gevorkyan, Jirair, Igarashi, Robert, Belfield, Kevin, Hernandez, Florencio, Kuebler, Stephen, Vonkalm, Laurence, University of Central Florida
-
Abstract / Description
-
The Mo-nitrogenase complex is composed of two components, Fe-protein and MoFe-protein. This complex is able to catalyze the reduction of N2 through the MgATP dependent transfer of electrons from the Fe-protein Fe4S4 cluster to the MoFe-protein P-cluster and, subsequently, to the iron-molybdenum cofactor (FeMo-co). FeMo-co is a Fe7S9MoC-(R)-homocitrate cluster and has two biosynthetic precursors, NifB-co and L-cluster, of unknown structure and composition. The biosynthesis of FeMo-co is an...
Show moreThe Mo-nitrogenase complex is composed of two components, Fe-protein and MoFe-protein. This complex is able to catalyze the reduction of N2 through the MgATP dependent transfer of electrons from the Fe-protein Fe4S4 cluster to the MoFe-protein P-cluster and, subsequently, to the iron-molybdenum cofactor (FeMo-co). FeMo-co is a Fe7S9MoC-(R)-homocitrate cluster and has two biosynthetic precursors, NifB-co and L-cluster, of unknown structure and composition. The biosynthesis of FeMo-co is an enigmatic process that minimally requires NifB, NifEN, Fe-protein, MoO42-, (R)-homocitrate and S-adenolsylmethionine.A means to isolate the NifB enzyme for characterization has been developed through use of a GST-fusion tag. Double recombination of A. vinelandii strains with a constructed vector has yielded strains capable of nif promoter regulated expression of GST-NifB. Extracts of strains containing GST-NifB were shown to activate the Mo-nitrogenase complex in biochemical complementation assays. Mass spectroscopy was then used to verify successful isolation of GST-NifB by GSH-Sepharose affinity purification.The number of NifB-co ligand binding sites and ligand types were examined by EXAFS analysis of samples containing selenol and thiol ligands. A Fe6S9C model for NifB-co was optimized to best fit the EXAFS data, where a 2-fold discrepancy in binding sites implied by thiol or selenol only ligand samples suggests Fe-(?2S)-Fe binding in the absence of Se. Samples containing heterogeneous ligand types indicated that NifX bound NifB-co ligates to four cysteine residues and one molecule of DTT.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004682, ucf:49865
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004682
-
-
Title
-
Treatment of Leachate Organic Matter through Sunlight Driven Processes.
-
Creator
-
Lozinski, Duncan, Reinhart, Debra, Lee, Woo Hyoung, Bolyard, Stephanie, University of Central Florida
-
Abstract / Description
-
The ability to manage leachate during post-closure care (PCC) of a landfill may be increasingly difficult as leachate organic matter (LOM) becomes recalcitrant when a landfill ages, requiring advanced and costly treatment technologies. This research investigated the ability to treat LOM through sunlight driven processes, with a focus on photolysis, to provide insight to landfill owners and operators on the potential of wetlands treatment as a means for reducing long-term risks and costs...
Show moreThe ability to manage leachate during post-closure care (PCC) of a landfill may be increasingly difficult as leachate organic matter (LOM) becomes recalcitrant when a landfill ages, requiring advanced and costly treatment technologies. This research investigated the ability to treat LOM through sunlight driven processes, with a focus on photolysis, to provide insight to landfill owners and operators on the potential of wetlands treatment as a means for reducing long-term risks and costs associated with leachate treatment during PCC. The study was completed in eight batch tests, where leachate was exposed to natural sunlight in central Florida for a period of 90 days. It was hypothesized that through photolytic reactions, in particular photolysis, high molecular weight recalcitrant LOM would be degraded to labile, low molecular weight material. To identify the treatment mechanisms, transformation processes were measured using ultraviolet-visible (UV-Vis) spectroscopy, fluorescence excitation-emission matrix spectroscopy (EEMs), size-exclusion chromatography (SEC), and chemical oxygen demand (COD) from the beginning to the end of the test period. Additionally, the ability for nitrogen species to become bioavailable when exposed to sunlight was evaluated for two of the leachate samples using solid-phase extraction (SPE) to fractionate recalcitrant dissolved organic nitrogen (rDON) and bioavailable dissolved organic nitrogen (bDON). Results suggest that treatment of LOM through sunlight driven processes is possible. Treatment is dependent upon the dilution of leachate and characteristics of the LOM. Dilution must be high enough to allow sunlight to penetrate the depth of the liquid. UV-Vis, EEMs, and SEC show that high molecular weight recalcitrant material is undergoing transformation into lower molecular weight material as a result of photolytic and likely biological reactions promoted by sunlight. The ability for nitrogen to become bioavailable when exposed to sunlight was shown to be dependent upon nitrogen concentrations in the sample.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007044, ucf:51987
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007044
-
-
Title
-
Comparison of a modified and traditional rapid infiltration basin for treatment and control of nutrients in wastewater effluent.
-
Creator
-
Cormier, Jessica, Duranceau, Steven, Wang, Dingbao, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Rapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water...
Show moreRapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water disposal. Few, if any, studies have been published where BAM-modified RIBs have been used for this purpose. In this work, a mixture of clay, tire crumb, and sand (CTS) was selected to serve as the BAM material (Bold and Gold(TM) CTS media). Each RIB was constructed with two feet of either sand or BAM, covering more than 43,600 square feet of surface area. The BAM-modified RIB had an initial 90 pounds per cubic-foot in-place density, and the density of the control RIB approximated about 94 pounds per cubic-foot. Over an eight-month period, loadings to the BAM RIB and control RIB approximated 5.4 million gallons (MG) per acre each. Water samples, collected from lysimeters installed below the 2-foot of sand or BAM materials, were gathered monthly during 2017 (except for September and October due to the impacts of hurricane Irma); these samples were analyzed for water quality to determine nitrate removal. Soil moisture and weather data were also collected over the study period. This study demonstrated the nitrate removal effectiveness of a field-scale BAM-modified RIB as compared to a traditional field-scale sand-based RIB. Results suggest that BAM removed 30 percent more nitrates than the Control (78% and 47%, respectively) under the conditions of the study. Furthermore, BAM removed higher percentages of TN (31%) and TP (62%) than the Control (12% and 28%, respectively).
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007566, ucf:52583
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007566
-
-
Title
-
Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions.
-
Creator
-
Hardin, Mike, Wanielista, Martin, Cooper, David, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data...
Show moreStormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model.The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data.The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes.The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005503, ucf:50338
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005503
-
-
Title
-
Childhood diet and mobility at medieval (1240s AD) Solt-T(&)#233;telhegy, Hungary as reconstructed from stable carbon, nitrogen, and oxygen isotope analysis.
-
Creator
-
Gugora, Ariana, Dupras, Tosha, Williams, Lana, Schultz, John, University of Central Florida
-
Abstract / Description
-
Between 2005 and 2009, archaeologists excavated more than 100 skeletons from the medieval (1240s AD) Hungarian site of Solt-T(&)#233;telhegy. Stable carbon and nitrogen isotope analyses were conducted on dental enamel and dentin from 24 individuals to examine their childhood diet. Although previous stable isotopic research has described the diet of medieval European peoples, this is the first such study on a medieval Hungarian population. The enamel ?13C values range from -14.4‰ to -8.6‰,...
Show moreBetween 2005 and 2009, archaeologists excavated more than 100 skeletons from the medieval (1240s AD) Hungarian site of Solt-T(&)#233;telhegy. Stable carbon and nitrogen isotope analyses were conducted on dental enamel and dentin from 24 individuals to examine their childhood diet. Although previous stable isotopic research has described the diet of medieval European peoples, this is the first such study on a medieval Hungarian population. The enamel ?13C values range from -14.4‰ to -8.6‰, with a mean of -11.1‰, while the dentin ?13C values range from -19.4‰ to -14.9‰, with an average of -17.4‰. These data indicate that C3 plants were the main plant type consumed by the majority of this population, with the exception of a few individuals, who appear to have included C4 plants in their diet. These results are to be expected, given the dominance of C3 over C4 plants in medieval Central Europe. Thus, based on historical and isotopic evidence, the outliers may have spent their childhoods elsewhere and later migrated into the Solt-T(&)#233;telhegy area. The ?15N values range from 9.5‰ to 11.6‰, with a mean of 10.6‰, indicating that animal protein was prevalent in the diets of the sample population. Despite clear signs of status differences indicated by burial location, stable nitrogen values also point to relatively egalitarian access to animal protein amongst the individuals. The enamel ?18Op values range from 23.6‰ to 27.2‰, with an average of 25.1‰, suggesting that multiple migrations occurred into the study site. The results of this study show that the dietary and mobility information gleaned from stable isotope analysis can be used to interpret the lifeways of archaeological peoples. ?
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005623, ucf:50213
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005623
-
-
Title
-
Animals of the cloud forest: isotopic variation of archaeological faunal remains from Kuelap, Peru.
-
Creator
-
Michell, Samantha, Toyne, J. Marla, Duncan, Neil, Dupras, Tosha, University of Central Florida
-
Abstract / Description
-
Stable isotopic analyses of faunal remains are used as a proxy for reconstructing the ancient Chachapoya dietary environment of the northeastern highlands in Peru. Archaeologists have excavated animal remains from refuse piles at the monumental center of Kuelap (AD 900-1535). This archaeological site is located at 3000 meters above sea level (m.a.s.l.), where C3 plants dominate the region. The study presented here is one of the few in the Central Andes that uses faunal remains to develop...
Show moreStable isotopic analyses of faunal remains are used as a proxy for reconstructing the ancient Chachapoya dietary environment of the northeastern highlands in Peru. Archaeologists have excavated animal remains from refuse piles at the monumental center of Kuelap (AD 900-1535). This archaeological site is located at 3000 meters above sea level (m.a.s.l.), where C3 plants dominate the region. The study presented here is one of the few in the Central Andes that uses faunal remains to develop local isotopic baselines, reconstruct resource exploitation, and provide insight into dietary variation. Bone collagen stable carbon (?13C) and nitrogen (?15N) isotopes are used to investigate animal diets of nine local fauna (Camelidae, Cervidae, Caviidae, Chinchillidae, Cuniculidae, Leporidae, Felidae, Canidae, and Aves). Different taxonomic families were evaluated to explore the range of isotopic variation within and between these animals. Stable carbon and nitrogen isotopic values of both the wild and domesticated Kuelap faunal samples suggest a diet of both C3 and C4 plant foods. Significant dietary differences were identified between domesticated and wild animals (specifically camelid and cervid), suggesting ecological differences or strategic provisioning from possible domestic C4 crops (maize) by humans. The domesticated camelids displayed a large isotopic variation similar to other highland archaeological studies in Peru, with an average ?13C value of (-)14.13 ‰ and a standard deviation of 2.96. The cervids displayed lower variation than the camelids and had an average carbon value of (-)19.13 ‰ with a standard deviation of 2.38. These are the first faunal isotopic data for the eastern montane region of Chachapoyas and serve as an essential baseline in the evaluation of human subsistence strategies and animal management strategies in the northern Peruvian highlands.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007226, ucf:52237
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007226
Pages