Current Search: residual stress (x)
View All Items
- Title
- CORRELATION BETWEEN PREPARATION PARAMETERS AND PROPERTIES OF MOLYBDENUM BACK CONTACT LAYER FOR CIGS THIN FILM SOLAR CELLS.
- Creator
-
Takahashi, Eigo, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
Molybdenum (Mo) thin film back contact layers for thin film CuIn(1-x)GaxSe2 (CIGS) solar cells were deposited onto soda lime glass substrates using a direct current (DC) planar magnetron sputtering deposition technique. Requirements for the Mo thin film as a back contact layer for CIGS solar cells are various. Sheet resistance, contact resistance to the CIGS absorber, optical reflectance, surface morphology, and adhesion to the glass substrate are the most important properties that the Mo...
Show moreMolybdenum (Mo) thin film back contact layers for thin film CuIn(1-x)GaxSe2 (CIGS) solar cells were deposited onto soda lime glass substrates using a direct current (DC) planar magnetron sputtering deposition technique. Requirements for the Mo thin film as a back contact layer for CIGS solar cells are various. Sheet resistance, contact resistance to the CIGS absorber, optical reflectance, surface morphology, and adhesion to the glass substrate are the most important properties that the Mo thin film back contact layer must satisfy. Experiments were carried out under various combinations of sputtering power and working gas pressure, for it is well known that mechanical, morphological, optical, and electrical property of a sputter-deposited Mo thin film are dependent on these process parameters. Various properties of each Mo film were measured and discussed. Sheet resistances were measured using a four-point probe equipment and minimum value of 0.25 Ω/sq was obtained for the 0.6 õm-thick Mo film. Average surface roughnesses of each Mo film ranged from 15 to 26 àwere measured by Dektak profilometer which was also employed to measure film thicknesses. Resistivities were calculated from the sheet resistance and film thickness of each film. Minimum resistivity of 11.9 õΩ∙cm was obtained with the Mo thin film deposited at 0.1 mTorr and 250 W. A residual stress analysis was conducted with a bending beam technique with very thin glass strips, and maximum tensile stress of 358 MPa was obtained; however, films did not exhibit a compressive stress. Adhesive strengths were examined for all films with a ÃÂ"Scotch-tapeÃÂ" test, and all films showed a good adhesion to the glass substrate. Sputter-deposited Mo thin films are commonly employed as a back contact layer for CIGS and CuInSe2 (CIS)-based solar cells; however, there are several difficulties in fabricating a qualified back contact layer. Generally, Mo thin films deposited at higher sputtering power and lower working gas pressure tend to exhibit lower resistivity; however, such films have a poor adhesion to the glass substrate. On the other hand, films deposited at lower power and higher gas pressure tend to have a higher resistivity, whereas the films exhibit an excellent adhesion to the glass substrate. Therefore, it has been a practice to employ multi-layered Mo thin film back contact layers to achieve the properties of good adhesion to the glass substrate and low resistivity simultaneously. However, multi layer processes have a lower throughput and higher fabricating cost, and requires more elaborated equipment compared to single layer processes, which are not desirable from the industrial point of view. As can be seen, above mentioned process parameters and the corresponding Mo thin film properties are at the two extreme ends of the spectrum. Hence experiments were conducted to find out the mechanisms which influence the properties of Mo thin films by changing the two process parameters of working gas pressure and sputtering power individually. The relationships between process parameters and above mentioned properties were studied and explained. It was found that by selecting the process parameters properly, less resistive, appropriate-surfaced, and highly adhesive single layer Mo thin films for CIGS solar cells can be achieved.
Show less - Date Issued
- 2010
- Identifier
- CFE0003031, ucf:48353
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003031
- Title
- EFFECTS OF BOND COAT SURFACE PREPARATION ON THERMAL CYCLING LIFETIME AND FAILURE CHARACTERISTICS OF THERMAL BARRIER COATINGS.
- Creator
-
Liu, Jing, Sohn, Yong-ho, University of Central Florida
- Abstract / Description
-
Thermal barrier coatings (TBCs) have been widely used in gas turbine engines to protect the underlying metal from high operating temperature so as to improve the durability of the components and enhance the engine efficiency. However, since the TBCs always operate in a demanding high-temperature environment of aircraft and industrial gas-turbine engines, a better understanding of this complex system is required to improve the durability and reliability.The objective of this study is to...
Show moreThermal barrier coatings (TBCs) have been widely used in gas turbine engines to protect the underlying metal from high operating temperature so as to improve the durability of the components and enhance the engine efficiency. However, since the TBCs always operate in a demanding high-temperature environment of aircraft and industrial gas-turbine engines, a better understanding of this complex system is required to improve the durability and reliability.The objective of this study is to investigate the effects of surface modification for the NiCoCrAlY bond coats on the thermal cycling lifetime and failure characteristics of TBCs. Parameters of modification for the bond coats included as-sprayed, barrel-finished, hand-polished and pre-oxidation heat treatment at 1100 C in =10-8 atm up to 4 hours, carried out prior to the electron beam physical vapor deposition (EB-PVD) of ZrO2-7wt% Y2O3 (7YSZ) ceramic topcoat. The resulting characteristics of the bond coat and the thermally grown oxide (TGO) scale were initially documented by surface roughness, phase constituents of the TGO scale, and residual stress of the TGO scale. The thermal cycling test consisted of 10-minute heat-up to 1121 C, 40-minute hold at 1121 C, and 10-minute forced air-quench. As-coated and thermally-cycled TBCs were characterized by optical profilometry (OPM), photo-stimulated luminescence spectroscopy (PSLS), optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), and scanning/transmission electron microscopy (TEM/STEM) equipped with high angle annular dark field (HAADF) and X-ray energy dispersive spectroscopy (XEDS). TBC specimens for TEM/STEM analysis were prepared by focused ion beam (FIB) in-situ lift-out (INLO) technique.Superior thermal cycling lifetime was observed for TBCs with as-sprayed bond coats regardless of pre-oxidation heat treatment, and TBCs with hand-polished bond coats only after pre-oxidation heat treatment. With pre-oxidation heat treatment, relative photostimulated luminescence intensity of the equilibrium ¦Á-Al2O3 increased. Thus, the improvement in TBC lifetime can be correlated with an increase in the amount of ¦Á-Al2O3 in the TGO scale, given a specific surface modification/roughness. The lifetime improvement due to pre-oxidation was particularly significant to TBCs with smooth hand-polished bond coats and negligible for TBCs with rough as-sprayed bond coats.Spallation-fracture paths depended on the lifetime of TBCs. Premature spallation of TBCs occurred at the interface between the YSZ and TGO. Longer durability can be achieved by restricting the fracture paths to the TGO/bond coat interface. Small particulate phase observed through the TGO scale was identified as Y2O3 (cubic) by diffraction analysis on TEM. While small addition of Y in the NiCoCrAlY bond coat helps the adhesion of the TGO scale, excessive alloying can lead to deleterious effects.
Show less - Date Issued
- 2004
- Identifier
- CFE0000097, ucf:46083
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000097
- Title
- MECHANISMS OF LIFETIME IMPROVEMENT IN THERMAL BARRIER COATINGS WITH HF AND/OR Y MODIFICATION OF CMSX-4 SUPERALLOY SUBSTRATES.
- Creator
-
Liu, Jing, Sohn, Yong ho, University of Central Florida
- Abstract / Description
-
In modern turbine engines for propulsion and energy generation, thermal barrier coating (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y- modified CMSX-4 superalloy substrates were examined. Thermal cyclic lifetime...
Show moreIn modern turbine engines for propulsion and energy generation, thermal barrier coating (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y- modified CMSX-4 superalloy substrates were examined. Thermal cyclic lifetime of TBCs was measured using a furnace thermal cycle test that consisted of 10-minute heat-up, 50-minute dwell at 1135C, and 10-minute forced-air-quench. TBC lifetime was observed to improve from 600 cycles to over 3200 cycles with appropriated Hf- and/or Y alloying of CMSX-4 superalloys. This significant improvement in TBC lifetime is the highest reported lifetime in literature with similar testing parameters. Beneficial role of reactive element (RE) on the durability of TBCS were systematically investigated in this study. Photostimulated luminescence spectroscopy (PL) was employed to non-destructively measure the residual stress within the TGO scale as a function of thermal cycling. Extensive microstructural analysis with emphasis on the YSZ/TGO interface, TGO scale, TGO/bond coat interface was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning electron microscopy (STEM) as a funcion of thermal cycling including after the spallation failure. Focused ion beam in-situ lift-out (FIB-INLO) technique was employed to prepare site-specific TEM specimens. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) were also employed for phase identification and interfacial chemical analysis. While undulation of TGO/bond coat interface (e.g., rumpling and ratcheting) was observed to be the main mechanism of degradation for the TBCs on baseline CMSX-4, the same interface remained relatively flat (e.g., suppressed rumpling and ratcheting) for durable TBCs on Hf- and/or Y-modified CMSX-4. The fracture paths changed from the YSZ/TGO interface to the TGO/bond coat interface when rumpling was suppressed. The geometrical incompatibility between the undulated TGO and EB-PVD YSZ lead to the failure at the YSZ/TGO interface for TBCs with baseline CMSX-4. The magnitude of copressive residual stress within the TGO scale measured by PL gradually decreased as a function of thermal cycling for TBCs with baseline CMSX-4 superalloy substrates. This gradual decrease corrsponds well to the undulation of the TGO scale that may lead to relaxation of the compressive residual stress within the TGO scale. For TBCs with Hf- and/or Y-modified CMSX-4 superalloy substrates, the magnitude of compressive residual stress within the TGO scale remained relatively constant throughout the thermal cycling, although PL corresponding to the stress-relief caused by localized cracks at the TGO/bond coat interface and within the TGO scale was observed frequently starting 50% of lifetime. A slightly smaller parabolic growth constant and grain size of the TGO scale was observed for TBCs with Hf- and/or Y- modified CMSX-4. Small monoclinic HfO2 precipitates were observed to decorate grain boundaries and the triple pointes within the alpha-Al2O3 scale for TBCs with Hf- and/or Y-modified CMSX-4 substrates. Segregation of Hf/Hf4+ at the TGO/bond coat interfaces was also observed for TBCs with Hf- and/or Y-modified CMSX-4 superalloys substrates. Adherent and pore-free YSZ/TGO interface was observed for TBCs with Hf- and/or Y-modified CMSX-4, while a significant amount of decohesion at the YSZ/TGO interface was observed for TBCs with baseline CMSX-4. The beta-NiAl(B2) phase in the (Ni,Pt)Al bond coat was observed to partially transform into gama prime-Ni3Al (L12) phase due to depletion of Al in the bond coat during oxidation. More importantly, the remaining beta-NiAl phase transformed into L10 martensitic phase upon cooling even though there was no significant difference in these phase transformations for all TBCs. Results from these microstructural observations are documented to elucidate mechanisms that suppress the rumpling of the TGO/bond coat interface, which is responsible for superior performance of EB-PVD TBCs with (Ni,Pt)Al bond coat and Hf- and/or Y-modified CMXS-4 superalloy.
Show less - Date Issued
- 2007
- Identifier
- CFE0001872, ucf:47382
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001872
- Title
- METHOD TO DISCRETIZE CONTINUOUS GRADIENT STRUCTURES AND CALCULATE THERMAL RESIDUAL STRESSES WITHIN LAYERED FUNCTIONALLY GRADED CERAMICS.
- Creator
-
Neale, Ryan E, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Functionally graded materials (FGMs) are an advanced class of material which seeks to leverage the strengths of one material to mitigate the weaknesses of another. This allows for operation in extreme environments or conditions where materials properties must change at various locations within a structure. Fabrication of this advanced class of material is limited due to geometric, economic, and material constraints inherent in the various methods. For this reason, a model was developed to...
Show moreFunctionally graded materials (FGMs) are an advanced class of material which seeks to leverage the strengths of one material to mitigate the weaknesses of another. This allows for operation in extreme environments or conditions where materials properties must change at various locations within a structure. Fabrication of this advanced class of material is limited due to geometric, economic, and material constraints inherent in the various methods. For this reason, a model was developed to discretize continuous gradient curves to allow for the use of a step-wise approximations to such gradients. These alternative step-wise gradients would allow for the use of numerous manufacturing techniques which have improved composition control, cost of processing, cost of equipment, and equipment availability. One such technique, tape casting, was explored due to its robustness and ability to create layered ceramics. Since ceramics are inherently brittle materials, they serve to be strengthened by the thermal residual stresses that form in the creation of these step-wise graded composites. With models to calculate these residual stresses and determine step-wise approximations of various compositional gradients, the process of designing these layered ceramics can be significantly improved.
Show less - Date Issued
- 2019
- Identifier
- CFH2000530, ucf:45633
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000530
- Title
- In-situ synchrotron studies of turbine blade thermal barrier coatings under extreme environments.
- Creator
-
Knipe, Kevin, Raghavan, Seetha, Gordon, Ali, Kapat, Jayanta, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
Thermal Barrier Coatings have been used for decades to impose a thermal gradient between the hot combustion gases and the underlying superalloy substrate in engine turbine blades. Yttria Stabilized Zirconia (YSZ) is an industry standard high temperature ceramic for turbine applications. The protective coating is adhered to the substrate using a nickel based alloy bond coat. Through exposure to high temperature, a Thermally Grown Oxide (TGO) layer develops at the bond coat-YSZ interface. Large...
Show moreThermal Barrier Coatings have been used for decades to impose a thermal gradient between the hot combustion gases and the underlying superalloy substrate in engine turbine blades. Yttria Stabilized Zirconia (YSZ) is an industry standard high temperature ceramic for turbine applications. The protective coating is adhered to the substrate using a nickel based alloy bond coat. Through exposure to high temperature, a Thermally Grown Oxide (TGO) layer develops at the bond coat-YSZ interface. Large residual stresses develop in these layers due to thermal expansion mismatch that occurs during cool down from high temperature spraying and cyclic operating conditions. Despite their standard use, much is to be determined as to how these residual stresses are linked to the various failure modes. This study developed techniques to monitor the strain and stress in these internal layers during thermal gradient and mechanical conditions representing operating conditions. The thermal gradient is applied across the coating thickness of the tubular samples from infrared heating of the outer coating and forced air internal cooling of the substrate. While thermal and mechanical loading conditions are applied, 2-dimensional diffraction measurements are taken using the high-energy Synchrotron X-Rays and analyzed to provide high-resolution depth-resolved strain. This study will include fatigue comparisons through use of samples, which are both 'as-coated' as well as aged to various stages in a TBC lifespan. Studies reveal that variations in thermal gradients and mechanical loads create corresponding trends in depth resolved strains with the largest effects displayed at or near the bond coat/TBC interface. Single cycles as well as experiments targeting thermal gradient and mechanical effects were conducted to capture these trends. Inelastic behavior such as creep was observed and quantified for the different layers at high temperatures. From these studies more accurate lifespan predictions, material behaviors, and causes of failure modes can be determined. The work further develops measurement and analysis techniques for diffraction measurements in internal layers on a coated tubular sample which can be used by various industries to analyze similar geometries with different applications.
Show less - Date Issued
- 2014
- Identifier
- CFE0005640, ucf:50206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005640
- Title
- EVOLUTION OF MICROSTRUCTURE AND RESIDUAL STRESS IN DISC-SHAPE EB-PVD THERMAL BARRIER COATINGS AND TEMPERATURE PROFILE OF HIGH PRESSURE TURBINE BLADE.
- Creator
-
Mukherjee, Sriparna, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
A detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of the characteristics of failure in electron beam physical vapor deposited (EB-PVD) TBCs is the development of instability, named rumpling, at the interface between (Ni, Pt)Al bond coat and thermally grown oxide (TGO). In this study, thermal cycling at 1100[degrees]C with 1 hr dwell time was carried out on 25.4mm disc specimens of...
Show moreA detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of the characteristics of failure in electron beam physical vapor deposited (EB-PVD) TBCs is the development of instability, named rumpling, at the interface between (Ni, Pt)Al bond coat and thermally grown oxide (TGO). In this study, thermal cycling at 1100[degrees]C with 1 hr dwell time was carried out on 25.4mm disc specimens of TBCs that consisted of EB-PVD coated ZrO2-7wt.%Y2O3, (Pt,Ni)Al bond coat, and CMSX-4 Ni-based superalloy. At specific fraction of lifetime,TBCs were examined by electron microscopy and photostimulated luminescence (PL). Changes in the average compressive residual stress of the TGO determined by PL and the magnitude of rumpling, determined by tortuosity from quantitative microstructural analyses, were examined with respect to the furnace thermal cyclic lifetime and microstructural evolution of TBCs. The combination of elastic strain energy within the TGO and interfacial energy at the interface between the TGO and the bond coat was defined as the TGO energy, and its variation with cyclic oxidation time was found to remain approximately constant ~135J/m2 during thermal cycling from 10% to 80% thermal cyclic lifetime. Parametric study at ~135J/m2 was performed and variation in residual stress with rumpling for different oxide scale thicknesses was examined. This study showed that the contribution of rumpling in residual stress relaxation decreased with an increase in TGO thickness. High pressure turbine blades serviced for 2843 hours and in the as coated form were also examined using electron microscopy and photostimulated luminescence. The difference in residual stress values obtained using PL on the suction and pressure sides of as-coated turbine blade were discussed. The presence of a thick layer of deposit on the serviced blade gave signals from stress free alpha-Al2O3 in the deposit, not from the TGO. The TGO growth constant data from the disc-shape TBCs, thermally cycled at 1100[degrees]C, and studies by other authors at different temperatures but on similar EB-PVD coated TBCs with (Pt, Ni)Al bond coat and CMSX-4 Ni- based superalloy were used to determine the temperature profile at the YSZ/bond coat interface. The interfacial temperature profiles of the serviced blade and the YSZ thickness profile were compared to document the variable temperature exposure at the leading edge, trailing edge, suction and the pressure side.
Show less - Date Issued
- 2011
- Identifier
- CFE0003927, ucf:48700
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003927
- Title
- ZrB2-SiC BASED ULTRA HIGH TEMPERATURE CERAMIC COMPOSITES: MECHANICAL PERFORMANCE AND MEASUREMENT AND DESIGN OF THERMAL RESIDUAL STRESSES FOR HYPERSONIC VEHICLE APPLICATIONS.
- Creator
-
Stadelmann, Richard, Orlovskaya, Nina, Kumar, Ranganathan, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
Ultra-high temperature ceramics (UHTCs), such as ZrB2-based ceramic composites, have been identified as next generation candidate materials for leading edges and nose cones in hypersonic air breathing vehicles. Mechanical performance of ceramic composites play an important role in the ultra-high temperature applications, therefore SiC is added to ZrB2 as a strengthening phase to enhance its mechanical performance. The high melting temperatures of both ZrB2 and SiC, as well as the ability of...
Show moreUltra-high temperature ceramics (UHTCs), such as ZrB2-based ceramic composites, have been identified as next generation candidate materials for leading edges and nose cones in hypersonic air breathing vehicles. Mechanical performance of ceramic composites play an important role in the ultra-high temperature applications, therefore SiC is added to ZrB2 as a strengthening phase to enhance its mechanical performance. The high melting temperatures of both ZrB2 and SiC, as well as the ability of SiC to form SiO2 refractory oxide layers upon oxidation make ZrB2-SiC ceramics very suitable for aerospace applications. Thermal residual stresses appearing during processing are unavoidable in sintered ZrB2-SiC ceramic composites. Residual microstresses appear at the microstructural level (intergranular microstresses) or at the crystal structure level (intragranular microstresses). These microstresses are of enormous importance for the failure mechanisms in ZrB2-SiC ceramics, such as ratio of the trans- and intergranular fracture; crack branching or bridging, microcracking, subcritical crack growth and others, as they govern crack propagation(-)induced energy dissipation and affect the toughness and strength of the ceramic material. Therefore, understanding the evolution of residual stress state in processed ZrB2-SiC ceramic composites and accurate measurements of these stresses are of high priority. In the present research the ZrB2-17vol%SiC, ZrB2-32vol%SiC, and ZrB2-45vol%SiC ultra-high temperature particulate ceramic composites were sintered using both Hot Pressing (HP) and Spark Plasma Sintering (SPS) techniques. The mechanical performance of the ZrB2-SiC composites was investigated using 3- and 4-point bending techniques for measurements of instantaneous fracture strength and fracture toughness. Resonant Ultrasound Spectroscopy was used for measurement of Young's, shear, and bulk moduli as well as Poisson's ratio of the composites. The distribution of thermal residual stresses and the effect of the applied external load on their re-distribution was studied using micro-Raman spectroscopy. Piezospectroscopic coefficients were determined for all compositions of ZrB2-SiC ceramic under study and their experimentally obtained values were compared with the piezospectroscopic coefficients both published in the literature and calculated using theoretical approach. Finally, the novel ZrB2-IrB2-SiC ceramic composites were also produced using Spark Plasma Sintering (SPS), where IrB2 powder was synthesized using mechanochemical route. It is expected that the IrB2 additive phase might contribute to the improved overall oxidation resistance of ZrB2 based ultra-high temperature ceramic composites.
Show less - Date Issued
- 2015
- Identifier
- CFE0006008, ucf:51004
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006008
- Title
- Scandia and ceria stabilized zirconia based electrolytes and anodes for intermediate temperature solid oxide fuel cells: Manufacturing and properties.
- Creator
-
Chen, Yan, Orlovskaya, Nina, An, Linan, Chen, Quanfang, Sohn, Yongho, Raghavan, Seetha, Huang, Xinyu, University of Central Florida
- Abstract / Description
-
Scandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the...
Show moreScandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the referential electrolytes containing pure SCSZ or YSZ. The electrolytes were manufactured by tape casting, laminating, and pressureless sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at ~30 ?m, the thickness of inner layers of SCSZ for the 3-, 4- and 6-layer designs varied at ~30, ~60 and ~120 ?m, respectively. Selected characterizations were employed to study the structure, morphology, impurity content and the density of the electrolytes. Furthermore, in situ X-ray diffraction, neutron diffraction and Raman scattering were carried out to study the phase transition and lattice distortion during long-term annealing at 350 (&)deg;C and 275 (&)deg;C for SCSZ and YSZ, respectively, where the dynamic damping occurred when Young's modulus was measured.In YSZ/SCSZ electrolytes, thermal residual stresses and strains were generated due to the mismatch of coefficients of thermal expansion from each layer of different compositions. They could be adjusted by varying the thickness ratios of each layer in different designs of laminates. The theoretical residual stresses have been calculated for different thickness ratios. The effect of thermal residual stress on the biaxial flexural strength was studied in layered electrolytes. The biaxial flexure tests of electrolytes with various layered designs were performed using a ring-on-ring method at both room temperature and 800 (&)deg;C. The maximum principal stress during fracture indicated an increase of flexural strength in the electrolytes with layered structure at both temperatures in comparison with the electrolytes without compositional gradient. Such an increase of strength is the result of the existence of residual compressive stresses in the outer YSZ layer. In addition, Weibull statistics of the strength values were built for the layered electrolytes tested at room temperature, and the effect of thermal residual stresses on Weibull distribution was established. The calculation of residual stress present at the outer layers was verified. The high ionic conductivity was maintained with layered electrolyte designs in the intermediate temperature range. It was also established that the ionic conductivity of layered electrolytes exhibited 7% (-) 11% improvement at 800 (&)deg;C due to the stress/strain effects, and the largest improvements in a certain electrolyte was found to nearly coincide with the largest residual compressive strain in the outer YSZ layer.In addition to the study of layered electrolytes, mechanical properties of porous Ni/SCSZ cermet were studied. The anode materials were reduced by 65 wt% NiO (-) 35 wt% SCSZ (N65) and 50 wt% NiO (-) 50 wt% SCSZ (N50) porous ceramics in the forming gas. Young's modulus as well as strength and fracture toughness of non-reduced and reduced anodes has been measured, both at room and high temperatures. High temperature experiments were performed in the reducing environment of forming gas. It was shown that while at 700 (&)deg;C and 800 (&)deg;C the anode specimens exhibited purely brittle deformation, a brittle-to-ductile transition occurred at 800 (-) 900 (&)deg;C, and the anode deformed plastically at 900 (&)deg;C. Fractography of the anode specimens were studied to identify the fracture modes of the anodes tested at different temperatures.
Show less - Date Issued
- 2013
- Identifier
- CFE0005090, ucf:50750
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005090
- Title
- DIFFRACTION STUDIES OF DEFORMATION IN SHAPE MEMORY ALLOYS AND SELECTED ENGINEERING COMPONENTS.
- Creator
-
RATHOD, CHANDRASEN, Vaidyanathan, Raj, University of Central Florida
- Abstract / Description
-
Deformation phenomena in shape memory alloys involve stress-, temperature-induced phase transformations and crystallographic variant conversion or reorientation, equivalent to a twinning operation. In near equiatomic NiTi, Ti rich compositions can exist near room temperature as a monoclinic B19' martensitic phase, which when deformed undergoes twinning resulting in strains as large as 8%. Upon heating, the martensite transforms to a cubic B2 austenitic phase, thereby recovering the strain and...
Show moreDeformation phenomena in shape memory alloys involve stress-, temperature-induced phase transformations and crystallographic variant conversion or reorientation, equivalent to a twinning operation. In near equiatomic NiTi, Ti rich compositions can exist near room temperature as a monoclinic B19' martensitic phase, which when deformed undergoes twinning resulting in strains as large as 8%. Upon heating, the martensite transforms to a cubic B2 austenitic phase, thereby recovering the strain and exhibiting the shape memory effect. Ni rich compositions on the other hand can exist near room temperature in the austenitic phase and undergo a reversible martensitic transformation on application of stress. Associated with this reversible martensitic transformation are macroscopic strains, again as large as 8%, which are also recovered and resulting in superelasticity. This work primarily focuses on neutron diffraction measurements during loading at the Los Alamos Neutron Science Center at Los Alamos National Laboratory. Three phenomena were investigated: First, the phenomena of hysteresis reduction and increase in linearity with increasing plastic deformation in superelastic NiTi. There is usually a hysteresis associated with the forward and reverse transformations in superelastic NiTi which translates to a hysteresis in the stress-strain curve during loading and unloading. This hysteresis is reduced in cold-worked NiTi and the macroscopic stress-strain response is more linear. This work reports on measurements during loading and unloading in plastically deformed (up to 11%) and cycled NiTi. Second, the tension-compression stress-strain asymmetry in martensitic NiTi. This work reports on measurements during tensile and compressive loading of polycrystalline shape-memory martensitic NiTi with no starting texture. Third, a heterogeneous stress-induced phase transformation in superelastic NiTi. Measurements were performed on a NiTi disc specimen loaded laterally in compression and associated with a macroscopically heterogeneous stress state. For the case of superelastic NiTi, the experiments related the macroscopic stress-strain behavior (from an extensometer or an analytical approach) with the texture, phase volume fraction and strain evolution (from neutron diffraction spectra). For the case of shape memory NiTi, the macroscopic connection was made with the texture and strain evolution due to twinning and elastic deformation in martensitic NiTi. In all cases, this work provided for the first time insight into atomic-scale phenomena such as mismatch accommodation and martensite variant selection. The aforementioned technique of neutron diffraction for mechanical characterization was also extended to engineering components and focused mainly on the determination of residual strains. Two samples were investigated and presented in this work; first, a welded INCONEL 718 NASA space shuttle flow liner was studied at 135 K and second, Ti-6Al-4V turbine blade components were investigated for Siemens Westinghouse Power Corporation. Lastly, also reported in this dissertation is a refinement of the methodology established in the author's masters thesis at UCF that used synchrotron x-ray diffraction during loading to study superelastic NiTi. The Los Alamos Neutron Science Center is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36. The work reported here was made possible by grants to UCF from NASA (NAG3-2751), NSF CAREER (DMR-0239512), Siemens Westinghouse Power Corporation and the Space Research Initiative.
Show less - Date Issued
- 2005
- Identifier
- CFE0000723, ucf:46608
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000723
- Title
- Design, Development, and Testing of a Miniature Fixture for Uniaxial Compression of Ceramics Coupled with In-Situ Raman Spectrometer.
- Creator
-
Jordan, Ryan, Orlovskaya, Nina, Kwok, Kawai, Ghosh, Ranajay, University of Central Florida
- Abstract / Description
-
This thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to...
Show moreThis thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to apply compressive loads up to 14,137 N, with negligible off axis loading, achieving target stresses of 500 MPa for samples of up to 6.00 mm in diameter. The system will be used in the future to study the structural changes in ceramics and ceramic composites, as well as to study thermal residual stress redistribution under applied compressive loads. A broad variety of Raman active ceramics, including the traditional structural ceramics 3mol%Y2O3-ZrO2, B4C, SiC, Si3N4, as well as exotic materials such as LaCoO3 and other perovskites will be studied using this system. Calibration of the systems load cell was performed in the configured state using MTS universal testing machines. To ensure residual stresses from mounting the load cell did not invalidate the original calibration, the in-situ compression stage was tested once attached to the Renishaw Raman spectrometer using LaCoO3 ceramic samples. The Raman shift of certain peaks in LaCoO3 was detected indicative of the effect of the applied compressive stress on the ceramics understudy.
Show less - Date Issued
- 2019
- Identifier
- CFE0007824, ucf:52809
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007824