Current Search: Discrete Dipole Approximation (x)
View All Items
- Title
- THEORETICAL TAILORING OF PERFORATED THIN SILVER FILMS FOR AFFINITY SURFACE PLASMON RESONANCE BIOSENSOR APPLICATIONS.
- Creator
-
Gongora Jr., Renan, Zou, Shengli, University of Central Florida
- Abstract / Description
-
Metallic films, in conjunction with biochemical-targeted probes, are expected to provide early diagnosis, targeted therapy and non-invasive monitoring for epidemiology applications. The resonance wavelength peaks, both plasmonic and Wood-Rayleigh Anomalies (WRAs), in the scattering spectra are affected by the metallic architecture. As of today, much research has been devoted to extinction efficiency in the plasmonic region. However, Wood Rayleigh Anomalies (WRAs) typically occur at...
Show moreMetallic films, in conjunction with biochemical-targeted probes, are expected to provide early diagnosis, targeted therapy and non-invasive monitoring for epidemiology applications. The resonance wavelength peaks, both plasmonic and Wood-Rayleigh Anomalies (WRAs), in the scattering spectra are affected by the metallic architecture. As of today, much research has been devoted to extinction efficiency in the plasmonic region. However, Wood Rayleigh Anomalies (WRAs) typically occur at wavelengths associated with the periodic distance of the structures. A significant number of papers have already focused on the plasmonic region of the visible spectrum, but a less explored area of research was presented here; the desired resonance wavelength region was 400-500nm, corresponding to the WRA for the silver film with perforated hole with a periodic distance of 400nm. Simulations obtained from the discrete dipole approximation (DDA) method, show sharp spectral bands (either high or low scattering efficiencies) in both wavelength regions of the visible spectrum simulated from Ag film with cylindrical hole arrays In addition, surprising results were obtained in the parallel scattering spectra,where the electric field is contained in the XY plane, when the angle between the metallic surface and the incident light was adjusted to 14 degrees; a bathochromic shift was observed for the WRA peak suggesting a hybrid resonance mode. Metallic films have the potential to be used in instrumental techniques for use as sensors, i.e. surface plasmon resonance affinity biosensors, but are not limited to such instrumental techniques. Although the research here was aimed towards affinity biosensors, other sensory designs can benefit from the optimized Ag film motifs. The intent of the study was to elucidate metal film motifs, when incorporated into instrumental analysis, allowing the quantification of genetic material in the visible region. Any research group that routinely benefits from quantification of various analytes in solution matrices will also benefit from this study, as there are a bewildering number of instrumental sensory methods and setups available.
Show less - Date Issued
- 2014
- Identifier
- CFH0004538, ucf:45155
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004538
- Title
- Optical Properties of Single Nanoparticles and Two-dimensional Arrays of Plasmonic Nanostructures.
- Creator
-
Zhou, Yadong, Zou, Shengli, Harper, James, Zhai, Lei, Chen, Gang, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
The tunability of plasmonic properties of nanomaterials makes them promising in many applications such as molecular detection, spectroscopy techniques, solar energy materials, etc. In the thesis, we mainly focus on the interaction between light with single nanoparticles and two-dimensional plasmonic nanostructures using electrodynamic methods. The fundamental equations of electromagnetic theory: Maxwell's equations are revisited to solve the problems of light-matter interaction, particularly...
Show moreThe tunability of plasmonic properties of nanomaterials makes them promising in many applications such as molecular detection, spectroscopy techniques, solar energy materials, etc. In the thesis, we mainly focus on the interaction between light with single nanoparticles and two-dimensional plasmonic nanostructures using electrodynamic methods. The fundamental equations of electromagnetic theory: Maxwell's equations are revisited to solve the problems of light-matter interaction, particularly the interaction of light and noble nanomaterials, such as gold and silver. In Chapter 1, Stokes parameters that describe the polarization states of electromagnetic wave are presented. The scattering and absorption of a particle with an arbitrary shape are discussed. In Chapter 2, several computational methods for solving the optical response of nanomaterials when they are illuminated by incident light are studied, which include the Discrete Dipole Approximation (DDA) method, the coupled dipole (CD) method, etc. In Chapter 3, the failure and reexamination of the relation between the Raman enhancement factor and local enhanced electric field intensity is investigated by placing a molecular dipole in the vicinity of a silver rod. Using a silver rod and a molecular dipole, we demonstrate that the relation generated using a spherical nanoparticle cannot simply be applied to systems with particles of different shapes. In Chapter 4, a silver film with switchable total transmission/reflection is discussed. The film is composed of two-dimensional rectangular prisms. The factors affecting the transmission (reflection) as well as the mechanisms leading to the phenomena are studied. Later, in Chapter 5 and 6, the sandwiched nano-film composed of two 2D rectangular prisms arrays and two glass substrates with a continuous film in between is examined to enhance the transmission of the continuous silver film.
Show less - Date Issued
- 2018
- Identifier
- CFE0007117, ucf:51943
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007117