Current Search: Emergency Evacuation (x)
View All Items
- Title
- HEURISTIC PRIORITIZATION OF EMERGENCY EVACUATION STAGING TO REDUCE CLEARANCE TIME.
- Creator
-
Mitchell, Steven, Radwan, Essam, University of Central Florida
- Abstract / Description
-
A region's evacuation strategy encompasses a variety of areas and needs. Primary among these is the minimization of total evacuation time, represented in models as the clearance time estimate (CTE). A generic testbed simulation network model was developed. An input/output (I/O) analysis was performed to establish a theoretical baseline CTE. Results were compared with simulations; analysis showed that the I/O method underestimated simulated CTE as a function of network size, with a correction...
Show moreA region's evacuation strategy encompasses a variety of areas and needs. Primary among these is the minimization of total evacuation time, represented in models as the clearance time estimate (CTE). A generic testbed simulation network model was developed. An input/output (I/O) analysis was performed to establish a theoretical baseline CTE. Results were compared with simulations; analysis showed that the I/O method underestimated simulated CTE as a function of network size, with a correction factor range of 1.09 to 1.19. A regression model was developed for the generic network. Predictors were total trips, and network size defined as a function of origin-destination distance. Total Trips ranged between 40,000 and 60,000. Holding size constant, R-squared values ranged from 97.1 to 99.3, indicating a high goodness of fit. Holding Total Trips constant, R-squared values ranged from 74.5 to 89.2. Finally, both Total Trips and size were used as predictors; the resulting regression model had an R-squared value of 97.3. This overall model is more useful, since real world situations are not fixed in nature. The overall regression model was compared to a case network. The generic network regression model provided a close CTE approximation; deltas ranged from -4.7% to 8.6%. It was concluded that a generic network can serve as a surrogate for a case network over these ranges. This study developed and evaluated heuristic strategies for evacuation using the generic network. Strategies were compared with a simultaneous departure loading scenario. Six different grouping strategies were evaluated. An initial evaluation was conducted using the generic network, and strategies that showed potential CTE reduction were implemented on the case study network. Analysis indicated that the HF-10 (half-far) grouping for 60k total trips showed potential reduction. A complete simulation was conducted on the case network for all HF scenarios; an ANOVA was run using Dunnett's comparison. Results indicated that the HF grouping with 20% and 30% departure shifts showed potential for CTE reduction. From this it was concluded that the generic network could be used as a testbed for strategies that would show success on a case network.
Show less - Date Issued
- 2006
- Identifier
- CFE0001098, ucf:46777
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001098
- Title
- SIMULATION AND CONTINUANCE OF OPERATION FOR THE USE OF TRANSIT (LYNX) TO BE USED IN EMERGENCY EVACUATION INCIDENTS.
- Creator
-
Elmitiny, Noor, Radwan, Essam, University of Central Florida
- Abstract / Description
-
The evacuation planning has become an important issue addressed by many research studies and publications aiming to improve the security of the daily life for our public inside the United States of America. The main objective of this research was to address the growing need for evacuation planning using traffic simulation. With increased interests and awareness in emergency evacuation and first responder access to emergencies in public locations (airports, transit stations, ports or stadiums)...
Show moreThe evacuation planning has become an important issue addressed by many research studies and publications aiming to improve the security of the daily life for our public inside the United States of America. The main objective of this research was to address the growing need for evacuation planning using traffic simulation. With increased interests and awareness in emergency evacuation and first responder access to emergencies in public locations (airports, transit stations, ports or stadiums), the traffic simulation can be helpful in orchestrating the traffic flow during emergencies. Related to this issue, Federal Transit Administration has issued a large number of publications and guidelines concerning emergency preparedness and incident management. These guidelines are used to develop a simulation-based activity to evaluate the current plan and alternative plans for the deployment of transit during an emergency situation. A major task for this project is to study the effect of evacuation on the surrounding traffic network and help the local transit company (LYNX) to evaluate their evacuation plan and consider different possibilities without the risk and cost of actual evacuation drills. A set of different scenarios and alternatives for each scenario were simulated and studied to reach the best possible evacuation strategy. The main findings were evacuation as pedestrians have less impact on traffic network and rerouting decreases the congestion resulting from the evacuation process.
Show less - Date Issued
- 2006
- Identifier
- CFE0001188, ucf:46870
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001188
- Title
- EMERGENCY EVACUATION ROUTE PLANNING CONSIDERING HUMAN BEHAVIOR DURING SHORT- AND NO-NOTICE EMERGENCY SITUATIONS.
- Creator
-
Kittirattanapaiboon, Suebpong, Geiger, Christopher, University of Central Florida
- Abstract / Description
-
Throughout United States and world history, disasters have caused not only significant loss of life, property but also enormous financial loss. The tsunami that occurred on December 26, 2004 is a telling example of the devastation that can occur unexpectedly. This unexpected natural event never happened before in this area. In addition, there was a lack of an emergency response plan for events of that magnitude. Therefore, this event resulted not only in a natural catastrophe for the people...
Show moreThroughout United States and world history, disasters have caused not only significant loss of life, property but also enormous financial loss. The tsunami that occurred on December 26, 2004 is a telling example of the devastation that can occur unexpectedly. This unexpected natural event never happened before in this area. In addition, there was a lack of an emergency response plan for events of that magnitude. Therefore, this event resulted not only in a natural catastrophe for the people of South and Southeast Asia, but it is also considered one of the greatest natural disasters in world history. After the giant wave dissipated, there were more than 230,000 people dead and more than US$10 billion in property damage and loss. Another significant event was the terrorist incident on September 11, 2001 (commonly referred to as 9/11) in United States. This event was unexpected and an unnatural, i.e., man-made event. It resulted in approximately 3,000 lives lost and about US$21 billion in property damage. These and other unexpected (or unanticipated) events give emergency management officials short- or no-notice to prevent or respond to the situation. These and other facts motivate the need for better emergency evacuation route planning (EERP) approaches in order to minimize the loss of human lives and property in short- or no-notice emergency situations. This research considers aspects of evacuation routing that have received little attention in research and, more importantly, in practice. Previous EERP models only either consider unidirectional evacuee flow from the source of a hazard to destinations of safety or unidirectional emergency first responder flow to the hazard source. However, in real-life emergency situations, these heterogeneous, incompatible flows occur simultaneously over a bi-directional capacitated lane-based travel network, especially in short- and no-notice emergencies. After presenting a review of the work related to the multiple flow EERP problem, mathematical formulations are presented for the EERP problem where the objective for each problem is to identify an evacuation routing plan (i.e., a traffic flow schedule) that maximizes evacuee and responder flow and minimizes network clearance time of both types of flow. In addition, we integrate the general human response behavior flow pattern, where the cumulative flow behavior follows different degrees of an S-shaped curve depending upon the level of the evacuation order. We extend the analysis to consider potential traffic flow conflicts between the two types of flow under these conditions. A conflict occurs when flow of different types occupy a roadway segment at the same time. Further, with different degrees of flow movement flow for both evacuee and responder flow, the identification of points of flow congestion on the roadway segments that occur within the transportation network is investigated.
Show less - Date Issued
- 2009
- Identifier
- CFE0002645, ucf:48229
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002645
- Title
- MODELING LANE-BASED TRAFFIC FLOW IN EMERGENCY SITUATIONS IN THE PRESENCE OF MULTIPLE HETEROGENEOUS FLOWS.
- Creator
-
Saleh, Amani, Geiger, Christopher, University of Central Florida
- Abstract / Description
-
In recent years, natural, man-made and technological disasters have been increasing in magnitude and frequency of occurrence. Terrorist attacks have increased after the September 11, 2001. Some authorities suggest that global warming is partly the blame for the increase in frequency of natural disasters, such as the series of hurricanes in the early-2000's. Furthermore, there has been noticeable growth in population within many metropolitan areas not only in the US but also worldwide....
Show moreIn recent years, natural, man-made and technological disasters have been increasing in magnitude and frequency of occurrence. Terrorist attacks have increased after the September 11, 2001. Some authorities suggest that global warming is partly the blame for the increase in frequency of natural disasters, such as the series of hurricanes in the early-2000's. Furthermore, there has been noticeable growth in population within many metropolitan areas not only in the US but also worldwide. These and other facts motivate the need for better emergency evacuation route planning (EERP) approaches in order to minimize the loss of human lives and property. This research considers aspects of evacuation routing never before considered in research and, more importantly, in practice. Previous EERP models only either consider unidirectional evacuee flow from the source of a hazard to destinations of safety or unidirectional emergency first responder flow to the hazard source. However, in real-life emergency situations, these heterogeneous, incompatible flows occur simultaneously over a bi-directional capacitated lane-based travel network, especially in unanticipated emergencies. By incompatible, it is meant that the two different flows cannot occupy a given lane and merge or crossing point in the travel network at the same time. In addition, in large-scale evacuations, travel lane normal flow directions can be reversed dynamically to their contraflow directions depending upon the degree of the emergency. These characteristics provide the basis for this investigation. This research considers the multiple flow EERP problem where the network travel lanes can be reconfigured using contraflow lane reversals. The first flow is vehicular flow of evacuees from the source of a hazard to destinations of safety, and the second flow is the emergency first responders to the hazard source. After presenting a review of the work related to the multiple flow EERP problem, mathematical formulations are proposed for three variations of the EERP problem where the objective for each problem is to identify an evacuation plan (i.e., a flow schedule and network contraflow lane configuration) that minimizes network clearance time. Before the proposed formulations, the evacuation problem that considers only the flow of evacuees out of the network, which is viewed as a maximum flow problem, is formulated as an integer linear program. Then, the first proposed model formulation, which addresses the problem that considers the flow of evacuees under contraflow conditions, is presented. Next, the proposed formulation is expanded to consider the flow of evacuees and responders through the network but under normal flow conditions. Lastly, the two-flow problem of evacuees and responders under contraflow conditions is formulated. Using real-world population and travel network data, the EERP problems are each solved to optimality; however, the time required to solve the problems increases exponentially as the problem grows in size and complexity. Due to the intractable nature of the problems as the size of the network increases, a genetic-based heuristic solution procedure that generates evacuation network configurations of reasonable quality is proposed. The proposed heuristic solution approach generates evacuation plans in the order of minutes, which is desirable in emergency situations and needed to allow for immediate evacuation routing plan dissemination and implementation in the targeted areas.
Show less - Date Issued
- 2008
- Identifier
- CFE0002168, ucf:47512
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002168
- Title
- Fire safety and emergency evacuation training for occupants of building using 3D virtual simulation.
- Creator
-
Bhide, Sayli, Rabelo, Luis, Lee, Gene, McCauley, Pamela, Ahmad, Ali, University of Central Florida
- Abstract / Description
-
With advancement in technology, building structures are becoming bigger and more complex. Incidences of horrifying fires that occur in such complex structures resulting in loss of property as well as lives are recorded worldwide. Emergency evacuation training can play a crucial role in mitigating damage not only in cases of fire, explosion or chemical spill but also in cases of natural calamities like floods and hurricanes. Conventional safety training provided in industries mostly comprises...
Show moreWith advancement in technology, building structures are becoming bigger and more complex. Incidences of horrifying fires that occur in such complex structures resulting in loss of property as well as lives are recorded worldwide. Emergency evacuation training can play a crucial role in mitigating damage not only in cases of fire, explosion or chemical spill but also in cases of natural calamities like floods and hurricanes. Conventional safety training provided in industries mostly comprises of unidirectional flow of information. Due to this passive learning style, response of employees in real life emergency situations is known to be ineffective. The proposed research focuses on the development of virtual emergency evacuation safety training for residents, workers and employees. This research developed a 3 dimensional (3D) virtual fire safety and emergency evacuation training for building occupants. A 3D model of a real engineering college building in the University of Central Florida (UCF) was developed in a virtual world and participants could interact with various objects and scenarios in this virtual building on a standard desktop computer using keyboard and mouse. Expert interviews and literature review were utilized to develop contents of fire safety and emergency evacuation training. Also, a slide based fire safety and emergency evacuation training was developed based on same contents and made available through a website. An effort was made to develop both trainings- virtual and slide based to be comparable in terms of contents. A case study with two sets of experiments comprising of 143 participants from UCF community was conducted to understand factors such as fidelity, simulation sickness, engagement and effectiveness of 3D virtual and slide based fire safety and emergency evacuation training. Results of fidelity and simulation sickness validated use of 3D virtual training for training building residents on fire safety and emergency evacuation. Data analysis of knowledge tests allowed to compare short terms and long term effectiveness of 3D virtual training and slide based training. To further understand engagement, physiological measure- electroencephalograph (EEG) of 40 healthy participants was recorded in second set of experiments. Ratio of Beta and Alpha frequency bands was studied to understand attention paid by trainees in 3D virtual and slide based training.
Show less - Date Issued
- 2017
- Identifier
- CFE0006935, ucf:51647
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006935