Current Search: Hopf bifurcations (x)
View All Items
- Title
- HOPF BIFURCATION ANALYSIS OF CHAOTIC CHEMICAL REACTOR MODEL.
- Creator
-
Mandragona, Daniel, Choudhury, Roy, University of Central Florida
- Abstract / Description
-
Bifurcations in Huang's chaotic chemical reactor system leading from simple dynamics into chaotic regimes are considered. Following the linear stability analysis, the periodic orbit resulting from a Hopf bifurcation of any of the six fixed points is constructed analytically by the method of multiple scales across successively slower time scales, and its stability is then determined by the resulting final secularity condition. Furthermore, we run numerical simulations of our chemical reactor...
Show moreBifurcations in Huang's chaotic chemical reactor system leading from simple dynamics into chaotic regimes are considered. Following the linear stability analysis, the periodic orbit resulting from a Hopf bifurcation of any of the six fixed points is constructed analytically by the method of multiple scales across successively slower time scales, and its stability is then determined by the resulting final secularity condition. Furthermore, we run numerical simulations of our chemical reactor at a particular fixed point of interest, alongside a set of parameter values that forces our system to undergo Hopf bifurcation. These numerical simulations then verify our analysis of the normal form.
Show less - Date Issued
- 2018
- Identifier
- CFH2000342, ucf:45831
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000342
- Title
- VARIATIONAL EMBEDDED SOLITONS, AND TRAVELING WAVETRAINS GENERATED BY GENERALIZED HOPF BIFURCATIONS, IN SOME NLPDE SYSTEMS.
- Creator
-
Smith, Todd, Choudhury, Roy, University of Central Florida
- Abstract / Description
-
In this Ph.D. thesis, we study regular and embedded solitons and generalized and degenerate Hopf bifurcations. These two areas of work are seperate and independent from each other. First, variational methods are employed to generate families of both regular and embedded solitary wave solutions for a generalized Pochhammer PDE and a generalized microstructure PDE that are currently of great interest. The technique for obtaining the embedded solitons incorporates several recent generalizations...
Show moreIn this Ph.D. thesis, we study regular and embedded solitons and generalized and degenerate Hopf bifurcations. These two areas of work are seperate and independent from each other. First, variational methods are employed to generate families of both regular and embedded solitary wave solutions for a generalized Pochhammer PDE and a generalized microstructure PDE that are currently of great interest. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the family of the trial functions). Thus, the residual is calculated, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that only the parameter regimes for the existence of solitary waves had previously been analyzed for the microstructure PDE considered here, the results obtained here are both new and timely. Second, we consider generalized and degenerate Hopf bifurcations in three different models: i. a predator-prey model with general predator death rate and prey birth rate terms, ii. a laser-diode system, and iii. traveling-wave solutions of twospecies predator-prey/reaction-diusion equations with arbitrary nonlinear/reaction terms. For speci c choices of the nonlinear terms, the quasi-periodic orbit in the post-bifurcation regime is constructed for each system using the method of multiple scales, and its stability is analyzed via the corresponding normal form obtained by reducing the system down to the center manifold. The resulting predictions for the post-bifurcation dynamics provide an organizing framework for the variety of possible behaviors. These predictions are veri ed and supplemented by numerical simulations, including the computation of power spectra, autocorrelation functions, and fractal dimensions as appropriate for the periodic and quasiperiodic attractors, attractors at in nity, as well as bounded chaotic attractors obtained in various cases. The dynamics obtained in the three systems is contrasted and explained on the basis of the bifurcations occurring in each. For instance, while the two predator-prey models yield a variety of behaviors in the post-bifurcation regime, the laser-diode evinces extremely stable quasiperiodic solutions over a wide range of parameters, which is very desirable for robust operation of the system in oscillator mode.
Show less - Date Issued
- 2011
- Identifier
- CFE0003634, ucf:48887
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003634
- Title
- EPIDEMIOLOGICAL MODELS FOR MUTATING PATHOGENS WITH TEMPORARY IMMUNITY.
- Creator
-
Singh, Neeta, Rollins, David, University of Central Florida
- Abstract / Description
-
Significant progress has been made in understanding different scenarios for disease transmissions and behavior of epidemics in recent years. A considerable amount of work has been done in modeling the dynamics of diseases by systems of ordinary differential equations. But there are very few mathematical models that deal with the genetic mutations of a pathogen. In-fact, not much has been done to model the dynamics of mutations of pathogen explaining its effort to escape the host's immune...
Show moreSignificant progress has been made in understanding different scenarios for disease transmissions and behavior of epidemics in recent years. A considerable amount of work has been done in modeling the dynamics of diseases by systems of ordinary differential equations. But there are very few mathematical models that deal with the genetic mutations of a pathogen. In-fact, not much has been done to model the dynamics of mutations of pathogen explaining its effort to escape the host's immune defense system after it has infected the host. In this dissertation we develop an SIR model with variable infection age for the transmission of a pathogen that can mutate in the host to produce a second infectious mutant strain. We assume that there is a period of temporary immunity in the model. A temporary immunity period along with variable infection age leads to an integro-differential-difference model. Previous efforts on incorporating delays in epidemic models have mainly concentrated on inclusion of latency periods (this assumes that the force of infection at a present time is determined by the number of infectives in the past). We begin with reviewing some basic models. These basic models are the building blocks for the later, more detailed models. Next we consider the model for mutation of pathogen and discuss its implications. Finally, we improve this model for mutation of pathogen by incorporating delay induced by temporary immunity. We examine the influence of delay as we establish the existence, and derive the explicit forms of disease-free, boundary and endemic equilibriums. We will also investigate the local stability of each of these equilibriums. The possibility of Hopf bifurcation using delay as the bifurcation parameter is studied using both analytical and numerical solutions.
Show less - Date Issued
- 2006
- Identifier
- CFE0001043, ucf:46801
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001043