Current Search: Ignition Delay Times (x)
View All Items
- Title
- IGNITION STUDIES OF DIISOPROPYL KETONE, A SECOND-GENERATION BIOFUEL.
- Creator
-
Pryor, Owen, Vasu, Subith, University of Central Florida
- Abstract / Description
-
This thesis focuses on ignition of diisopropyl ketone (DIPK), a new biofuel candidate that is produced by endophytic conversion. The ignition delay times behind reflected shockwaves were modeled in a high-pressure shock tube. The ignition delay times were compared to other biofuels and gasoline surrogates. Parametric studies of the ignition delay experiments were performed between 1-10 atm and 900 -1200K. An OH optical sensor was developed in conjunction for the ignition delay experiments....
Show moreThis thesis focuses on ignition of diisopropyl ketone (DIPK), a new biofuel candidate that is produced by endophytic conversion. The ignition delay times behind reflected shockwaves were modeled in a high-pressure shock tube. The ignition delay times were compared to other biofuels and gasoline surrogates. Parametric studies of the ignition delay experiments were performed between 1-10 atm and 900 -1200K. An OH optical sensor was developed in conjunction for the ignition delay experiments. The OH optical sensor uses a microwave discharge lamp to generate light at 308 nm that will then be shined through the combustion reaction. Using Beer-Lambert law the concentration of OH can be obtained during ignition and oxidation of hydrocarbon fuels in a shock tube. DIPK ignition delay time experiments are planned in two shock tubes (located at UCF and UF) to provide ignition and OH time-histories data for model validation.
Show less - Date Issued
- 2014
- Identifier
- CFH0004635, ucf:45253
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004635
- Title
- Combustion of 1,3-Butadiene behind Reflected Shocks.
- Creator
-
Lopez, Joseph, Vasu Sumathi, Subith, Orlovskaya, Nina, Kassab, Alain, University of Central Florida
- Abstract / Description
-
The chemical kinetics of 1,3-butadiene (1,3-C4H6) are important because 1,3-butadiene is a major intermediate during the combustion of real fuels. However, there is only limited information on the chemical kinetics of 1,3-butadiene combustion, which has applications in several combustion schemes that are currently being developed, including spark-assisted homogeneous charge compression ignition and fuel reformate exhaust gas recirculation.In the present work, the ignition delay times of 1,3...
Show moreThe chemical kinetics of 1,3-butadiene (1,3-C4H6) are important because 1,3-butadiene is a major intermediate during the combustion of real fuels. However, there is only limited information on the chemical kinetics of 1,3-butadiene combustion, which has applications in several combustion schemes that are currently being developed, including spark-assisted homogeneous charge compression ignition and fuel reformate exhaust gas recirculation.In the present work, the ignition delay times of 1,3-butadiene mixtures has been investigated using pressure data. Oxidation of 1,3-butadiene/oxygen mixtures diluted in argon or nitrogen at equivalence ratios (?) of 0.3 behind reflected shock waves has been studied at temperatures ranging from 1100 to 1300K and at pressures ranging from 1 to 2atm. Reaction progress was monitored by recording concentration time-histories of 1,3-butadiene and OH* radical at a location 2cm from the end wall of a 13.4m long shock tube with an inner diameter of 14cm. 1,3-Butadiene concentration time-histories were measured by absorption spectroscopy at 10.5?m from the P14 line of a tunable CO2 gas laser. OH* production was measured by recording emission around 306.5nm with a pre-amplified gallium phosphide detector and a bandpass filter. Ignition delay times were also determined from the OH* concentration time-histories. The measured concentration time-histories and ignition delay times were compared with two chemical kinetics models. The measured time-histories and ignition delay times provide targets for the refinement of chemical kinetic models at the studied conditions.
Show less - Date Issued
- 2017
- Identifier
- CFE0006618, ucf:51276
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006618
- Title
- High Temperature Shock Tube Ignition Studies of CO2 Diluted Mixtures.
- Creator
-
Pryor, Owen, Vasu Sumathi, Subith, Kapat, Jayanta, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Energy demand is expected to grow by 20% over the next 10 years. In order to account for this increase in energy consumption new and novel combustion techniques are required to mitigate the effects of pollution and fossil fuel dependency. Oxy-fuel combustion in supercritical carbon dioxide (sCO2) cycles can increase plant efficiencies up to 52% and reduce pollutants such as NOX and CO2 by 99%. Supercritical engine cycles have demonstrated electricity costs of $121/MWh, which is competitive in...
Show moreEnergy demand is expected to grow by 20% over the next 10 years. In order to account for this increase in energy consumption new and novel combustion techniques are required to mitigate the effects of pollution and fossil fuel dependency. Oxy-fuel combustion in supercritical carbon dioxide (sCO2) cycles can increase plant efficiencies up to 52% and reduce pollutants such as NOX and CO2 by 99%. Supercritical engine cycles have demonstrated electricity costs of $121/MWh, which is competitive in comparison to conventional coal ($95.60/MWh) and natural gas power plants ($128.4/MWe). This increase in efficiency is mainly driven by the near-liquid density of the working fluid (sCO2), in the super critical regime, before entering the turbine for energy extraction of the high pressure and high density sCO2 gas. In addition, supercritical CO2 engine cycles produce near-zero air emissions since CO2, a product of combustion, is the working fluid of the system which can be regenerated to the combustor. The predictive accuracy and lack of combustion models in highly CO2 diluted mixtures and at high pressures is one the major limitations to achieving optimum design of super critical engine combustors. Also, most natural gas mechanisms and validation experiments have been conducted at low pressures (typically less than 40 atm) and not in CO2 diluted environment. Thus experimental data is important for the development of modern combustion systems from work focusing on supercritical carbon dioxide cycles to rotational detonation engines. This thesis presents the design of the shock tube and two optical diagnostic techniques for measuring ignition delay times and species time histories using a shock tube in CO2 diluted mixtures.Experimental data for ignition delay times and species time-histories (CH4) were obtained in mixtures diluted with CO2. Experiments were performed behind reflected shockwaves from temperatures of 1200 to 2000 K for pressures ranging from 1 to 11 atm. Ignition times were obtained from emission and laser absorption measurements. Current experimental data were compared with the predictions of detailed chemical kinetic models (available from literature) that will allow for accurate design and modeling of combustion systems.
Show less - Date Issued
- 2016
- Identifier
- CFE0006165, ucf:51141
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006165
- Title
- Laser Spark Ignition of Counter-flow Diffusion Flames: Effects of diluents and diffusive-thermal properties.
- Creator
-
Sime Segura, Fidelio, Deng, Weiwei, Chen, Ruey-Hung, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
A pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion flames with the use of helium and argon as diluents to achieve a wide range of variations in transport properties. The global strain rate and Damk(&)#246;hler number on successful ignition were investigated for the effects of Lewis number and transport properties, which are dependent on the diluent type and dilution level. A high-speed camera is used to record the ignition events and a software is...
Show moreA pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion flames with the use of helium and argon as diluents to achieve a wide range of variations in transport properties. The global strain rate and Damk(&)#246;hler number on successful ignition were investigated for the effects of Lewis number and transport properties, which are dependent on the diluent type and dilution level. A high-speed camera is used to record the ignition events and a software is used for pre-ignition flow field and mixing calculations. It is found that the role of effective Lewis number on the critical global strain rate, beyond which ignition is not possible, is qualitatively similar that on the extinction strain rate. With the same level of dilution, the inert diluent with smaller Lewis number yields larger critical global strain rate. The critical Damk(&)#246;hler number below which no ignition is possible is found to be within approximately 20% for all the fuel-inert gas mixtures studied. When successful ignition takes place, the ignition time increases as the level of dilution of argon is increased. The ignition time decreases with increasing level of helium dilution due to decreases in thermal diffusion time, which causes rapid cooling of the flammable layer during the ignition process. However, the critical strain for ignition with helium dilution rapidly decreases as the dilution level is increased. The experimental results show that with the increase of strain rate the time to steady flame decreases, and that with the increase of dilution level time for the flame to become steady increases. For the same level of dilution, the time for steady flame is observed to be longer for He-diluted flames than for Ar-diluted flames due to its thermal diffusivity being larger than that of Ar.
Show less - Date Issued
- 2012
- Identifier
- CFE0004295, ucf:49467
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004295
- Title
- NUMERICAL MODELING OF THE SHOCK TUBE FLOW FIELDS BEFORE ANDDURING IGNITION DELAY TIME EXPERIMENTS AT PRACTICAL CONDITIONS.
- Creator
-
lamnaouer, mouna, Kassab, Alain, University of Central Florida
- Abstract / Description
-
An axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to...
Show moreAn axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous and reactive effects. A conjugate heat transfer model has been incorporated which enhanced the credibility of the simulations. The multi-dimensional, time-dependent numerical simulations resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. The robustness of the numerical model and the accuracy of the simulations were assessed through validation with the analytical ideal shock-tube theory and experimental data. The numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous effects are incorporated through viscous modeling. The non-idealities in the shock tube have been investigated and quantified, notably the non-ideal transient behavior in the shock tube nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected shock/boundary layer interactions or what is known as bifurcation, and the contact surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave. Both the inviscid and the viscous non-reactive models provided a baseline for the combustion model iii which involves elementary chemical reactions and requires the coupling of the chemistry with the flow fields adding to the complexity of the problem and thereby requiring tremendous computational resources. Combustion modeling focuses on the ignition process behind the reflected shock wave in undiluted and diluted Hydrogen test gas mixtures. Accurate representation of the Shock ÃÂtube reactive flow fields is more likely to be achieved by the means of the LES model in conjunction with the EDC model. The shock-tube CFD model developed herein provides valuable information to the interpretation of the shock-tube experimental data and to the understanding of the impact the facility-dependent non-idealities can have on the ignition delay time measurements.
Show less - Date Issued
- 2010
- Identifier
- CFE0003011, ucf:48366
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003011
- Title
- METHANE AND DIMETHYL ETHER OXIDATION AT ELEVATED TEMPERATURES AND PRESSURE.
- Creator
-
Zinner, Christopher, Basu, Saptarshi, University of Central Florida
- Abstract / Description
-
Autoignition and oxidation of two Methane (CH4) and Dimethyl Ether (CH3OCH3 or DME) mixtures in air were studied in shock tubes over a wide range of equivalence ratios at elevated temperatures and pressures. These experiments were conducted in the reflected shock region with pressures ranging from 0.8 to 35.7 atmospheres, temperatures ranging from 913 to 1650 K, and equivalence ratios of 2.0, 1.0, 0.5, and 0.3. Ignition delay times were obtained from shock-tube endwall pressure traces for...
Show moreAutoignition and oxidation of two Methane (CH4) and Dimethyl Ether (CH3OCH3 or DME) mixtures in air were studied in shock tubes over a wide range of equivalence ratios at elevated temperatures and pressures. These experiments were conducted in the reflected shock region with pressures ranging from 0.8 to 35.7 atmospheres, temperatures ranging from 913 to 1650 K, and equivalence ratios of 2.0, 1.0, 0.5, and 0.3. Ignition delay times were obtained from shock-tube endwall pressure traces for fuel mixtures of CH4/CH3OCH3 in ratios of 80/20 percent volume and 60/40 percent volume, respectively. Close examination of the data revealed that energy release from the mixture is occurring in the time between the arrival of the incident shock wave and the ignition event. An adjustment scheme for temperature and pressure was devised to account for this energy release and its effect on the ignition of the mixture. Two separate ignition delay correlations were developed for these pressure- and temperature-adjusted data. These correlations estimate ignition delay from known temperature, pressure, and species mole fractions of methane, dimethyl ether, and air (0.21 O2 + 0.79 N2). The first correlation was developed for ignition delay occurring at temperatures greater than or equal to 1175 K and pressures ranging from 0.8 to 35.3 atm. The second correlation was developed for ignition delay occurring at temperatures less than or equal to 1175 K and pressures ranging from 18.5 to 40.0 atm. Overall good agreement was found to exist between the two correlations and the data of these experiments. Findings of these experiments also include that with pressures at or below ten atm, increased concentrations of dimethyl ether will consistently produce faster ignition times. At pressures greater than ten atmospheres it is possible for fuel rich mixtures with lower concentrations of dimethyl ether to give the fastest ignition times. This work represents the most thorough shock tube investigation for oxidation of methane with high concentration levels of dimethyl ether at gas turbine engine relevant temperatures and pressures. The findings of this study should serve as a validation for detailed chemical kinetics mechanisms.
Show less - Date Issued
- 2008
- Identifier
- CFE0002096, ucf:47539
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002096
- Title
- Ignition Studies of Oxy-Syngas/CO2 Mixtures Using Shock Tube for Cleaner Combustion Engines.
- Creator
-
Barak, Samuel, Vasu Sumathi, Subith, Kapat, Jayanta, Ahmed, Kareem, University of Central Florida
- Abstract / Description
-
In this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2 cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% - 85% by volume...
Show moreIn this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2 cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% - 85% by volume. A 10% fuel concentration was consistently used throughout the experiments. This study looked at the effects of changing the equivalence ratios (?), between 0.33, 0.5, and 1.0 as well as changing the fuel ratio (?), hydrogen to carbon monoxide, from 0.25, 1.0 and 4.0. The study was performed at 1.61-1.77 atm and a temperature range of 1006-1162K. The high-speed imaging was performed through a quartz end wall with a Phantom V710 camera operated at 67,065 frames per second. From the experiments, when increasing the equivalence ratio, it resulted in a longer ignition delay time. In addition, when increasing the fuel ratio, a lower ignition delay time was observed. These trends are generally expected with this combustion reaction system. The high-speed imaging showed non-homogeneous combustion in the system, however, most of the light emissions were outside the visible light range where the camera is designed for. The results were compared to predictions of two combustion chemical kinetic mechanisms: GRI v3.0 and AramcoMech v2.0 mechanisms. In general, both mechanisms did not accurately predict the experimental data. The results showed that current models are inaccurate in predicting CO2 diluted environments for syngas combustion.
Show less - Date Issued
- 2018
- Identifier
- CFE0006974, ucf:52909
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006974