Current Search: Nanoindentation (x)
View All Items
- Title
- INSTRUMENTED NANOINDENTATION STUDIES OF DEFORMATION IN SHAPE MEMORY ALLOYS.
- Creator
-
Rajagopalan, Sudhir, Vaidyanathan, Rajan, University of Central Florida
- Abstract / Description
-
Near equi-atomic nickel titanium (NiTi) shape memory alloys (SMAs) are a class of materials characterized by their unique deformation behavior. In these alloys, deformation mechanisms such as mechanical twinning and stress induced phase transformation between a high symmetry phase (austenite) and a low symmetry phase (martensite) additionally occur and influence mechanical behavior and thus their functionality. Consequently, applications of SMAs usually call for precise phase transformation...
Show moreNear equi-atomic nickel titanium (NiTi) shape memory alloys (SMAs) are a class of materials characterized by their unique deformation behavior. In these alloys, deformation mechanisms such as mechanical twinning and stress induced phase transformation between a high symmetry phase (austenite) and a low symmetry phase (martensite) additionally occur and influence mechanical behavior and thus their functionality. Consequently, applications of SMAs usually call for precise phase transformation temperatures, which depend on the thermomechanical history and the composition of the alloy. Instrumented indentation, inherently a mechanical characterization technique for small sampling volumes, offers a cost effective means of empirically testing SMAs in the form of centimeter scaled buttons prior to large-scale production. Additionally, it is an effective probe for intricate SMA geometries (e.g., in medical stents, valves etc.), not immediately amenable to conventional mechanical testing. The objective of this work was to study the deformation behavior of NiTi SMAs using instrumented indentation. This involved devising compliance calibration techniques to account for instrument deformation and designing spherical diamond indenters. Substantial quantitative information related to the deformation behavior of the shape memory and superelastic NiTi was obtained for the first time, as opposed to existing qualitative indentation studies. For the case of shape memory NiTi, the elastic modulus of the B19' martensite prior to twinning was determined using spherical indentation to be about 101 GPa, which was comparable to the value from neutron diffraction and was substantially higher than typical values reported from extensometry (68 GPa in this case). Twinning at low stresses was observed from neutron diffraction measurements and was attributed to reducing the elastic modulus estimated by extensometry. The onset of predominantly elastic deformation of the twinned martensite was identified from the nanoindentation response and the elastic modulus of the twinned martensite was estimated to be about 17 GPa. Finite element modeling was used to validate the measurements. For the case of the superelastic NiTi, the elastic modulus of the parent austenite was estimated to be about 62 GPa. The onset of large-scale stress induced martensite transformation and its subsequent elastic deformation were identified from the nanoindentation response. The effect of cycling on the mechanical behavior of the NiTi specimen was studied by repeatedly indenting at the same location. An increase in the elastic modulus value for the austenite and a decrease in the associated hysteresis and residual depth after the initial few cycles followed by stabilization were observed. As for the case of shape memory NiTi, finite element modeling was used to validate the measurements. This work has initiated a methodology for the quantitative evaluation of shape memory and superelastic NiTi alloys with instrumented spherical indentation. The aforementioned results have immediate implications for optimizing thermomechanical processing parameters in prototype button melts and for the mechanical characterization of intricate SMA geometries (e.g., in medical stents, valves etc.) This work was made possible by grants from NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF.
Show less - Date Issued
- 2005
- Identifier
- CFE0000652, ucf:46502
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000652
- Title
- A METHODOLOGY FOR INSTRUMENTED INDENTATION STUDIES OF DEFORMATION IN BULK METALLIC GLASSES.
- Creator
-
Sridharan, Subhaashree, Vaidyanathan, Raj, University of Central Florida
- Abstract / Description
-
Bulk Metallic Glasses (BMGs), also known as amorphous metals, are of considerable scientific and commercial interest due to their random or chaotic structure. Given their potential use as engineering materials, there is a concomitant need to establish their mechanical properties. However, BMGs are not conveniently available in sufficient volumes (especially experimental and combinatorial compositions), making property determination via conventional tensile or compression testing problematic....
Show moreBulk Metallic Glasses (BMGs), also known as amorphous metals, are of considerable scientific and commercial interest due to their random or chaotic structure. Given their potential use as engineering materials, there is a concomitant need to establish their mechanical properties. However, BMGs are not conveniently available in sufficient volumes (especially experimental and combinatorial compositions), making property determination via conventional tensile or compression testing problematic. Instrumented indentation is ideally suited for this purpose because the testing requires only small sampling volumes and can probe multiaxial deformation characteristics at various length scales. In this technique, conducted generally on a sub-micron regime, the depth of penetration of an indenter, usually a diamond, is measured as a function of the applied load and expressed graphically as load (P) - displacement (h) curves from which a host of mechanical properties can be extracted and studied. In this work, a methodology for using instrumented indentation at nano- and micro- scales to determine the mechanical response of BMGs was developed and implemented. The implementation primarily focused on deformation in the elastic regime but included preliminary results related to the onset of inelastic deformation. The methodology developed included calibration techniques, formulations to extract the machine compliances, verifications using standards and verification for uniqueness of instrument deformation under a spherical indenter. The methodology was different for the two platforms used based on the load-depth response characteristics of the instrument. In the case of the Micro Test platform, the load-depth response of the instrument was linear. In the case of the Nano Test platform, the instrument load-depth response followed a 3/2 power law, representative of Hertzian behavior. The load-depth response of the instrument was determined by subtracting the theoretical response from the corresponding raw load-depth response obtained by elastically indenting a standard steel specimen of known modulus. The true response of the sample was then obtained by subtracting the instrument's response from the corresponding uncorrected load-depth response (raw data). An analytical model to describe the load-train compliance was developed. The methodology was verified using quartz and tungsten standards. Indentation experiments were conducted on Zr41.25Ti13.75Cu12.5Ni10Be22.5 (Vitreloy 1), Cu60Hf25Ti15, Cu60Zr30Ti10 and Fe60Co7Zr10Mo5W2B16 bulk metallic glasses using spherical indenters with diameters 2.8 mm and 100 m. The spherical geometry results in a simpler stress distribution under the indenter (when compared to a sharp geometry) and furthermore by recourse to spherical indenters the onset of plastic deformation was delayed. In the case of the Zr-based BMG, the experiments showed that the elastic response did not depend on the diameter of the indenter used indicative of the absence of residual stresses in the sample. Large scale plastic deformation was observed when the sample was indented using a smaller diameter indenter. Log scale analysis (i.e., examining the results on a log load vs. log depth response to check for deviation from Hertzian behavior) showed a deviation from a 3/2 fit indicating a deviation from elastic behavior. The onset implied a yield strength value of ~ 4 GPa, higher than the value reported in the literature (~ 2 GPa). Hence, it is believed that the first signs of plastic deformation occurred at lower loads than the predicted loads from the log scale analysis procedure and is expected to occur as discrete bursts. Discrete plastic events or "pop-ins" were observed in the load-depth indentation responses under quasistatic loading conditions, which were believed to be associated with shear band activity. An attempt was made to formulate a mathematical model based on three yield criteria (Drucker-Prager, Mohr-Coulomb and von Mises). Based on the von Mises predictions and comparable experiments on a quartz standard, it was established that the pop-ins observed were real and not an instrument artifact. Multiple load cycles following partial unload experiments showed that the pop-ins affected the subsequent indentation response. The moduli and the yield strength values obtained for the Cu-based BMGs were comparable to the values reported in the literature. There was significant scatter in the indentation data from the Fe-based BMG. Porosity and lack of 100 % compaction were believed to be the reasons for scatter in the data. The financial support of NSF through grant DMR 0314212 is gratefully acknowledged.
Show less - Date Issued
- 2006
- Identifier
- CFE0001442, ucf:47047
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001442
- Title
- Interdiffusion, Crystallography and Mechanical Properties of Nickel Manganese Gallium Alloys.
- Creator
-
Zhou, Le, Sohn, Yongho, Heinrich, Helge, Coffey, Kevin, An, Linan, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
NiMnGa Heusler alloys, functioning as either ferromagnetic shape memory alloys or mangetocaloric materials, have both practical applications and fundamental research value. The functional properties of NiMnGa alloys are closely related to the martensitic transformation from high temperature austenitic phase to low temperature martensitic phase. Alloys can be used for room temperature or high temperature applications, depending on the martensitic transformation temperature, which is...
Show moreNiMnGa Heusler alloys, functioning as either ferromagnetic shape memory alloys or mangetocaloric materials, have both practical applications and fundamental research value. The functional properties of NiMnGa alloys are closely related to the martensitic transformation from high temperature austenitic phase to low temperature martensitic phase. Alloys can be used for room temperature or high temperature applications, depending on the martensitic transformation temperature, which is compositional sensitive. The microstructure and crystallography of the martensites can be very complex but are crucial to the optimization of the material performance. In this study, for the first time, a combinatorial study by combining solid-to-solid diffusion couples and various characterization techniques was carried out to fundamentally investigate the NiMnGa ternary alloys. Phase equilibria, interdiffusion behavior, microstructural and crystallographic development, and mechanical properties in NiMnGa alloys were systematically examined. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys (i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24 in atomic percent) were assembled and annealed at 800, 850 and 900 (&)deg;C for 480, 240 and 120 hours, respectively. The microstructure and concentration profiles of the interdiffusion zone were examined by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Concentration profiles across the interdiffusion zone were further quantified by electron probe micro analysis (EPMA). Detailed microstructure and crystallography of the austenite and martensite were investigated using transmission electron microscopy (TEM). TEM thin foils were prepared by using focused ion beam (FIB) in situ lift out (INLO) technique, which is able to select desired composition from diffusion couples. The mechanical properties, namely reduced elastic modulus and hardness, as a function of composition were assessed via nanoindentation. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the ?(Mn) + ? two-phase region was slightly modified. In addition, equilibrium compositions for the ?(Ni) and ?' phases at 900 (&)deg;C were also determined for the respective two-phase regions. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear interphase boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but decreased to lower values when Mn concentration increased to more than 35 at. %. Average effective interdiffusion coefficients for the ? phase over various compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux of Ni also has strong influences on the interdiffusion of Mn and Ga with large and negative cross interdiffusion coefficients. The main ternary interdiffusion coefficients exhibited minimum values near 52 at. % Ni concentration. Extensive TEM analyses have been performed for the study of microstructure and crystallography of austenite and martensite from all diffusion couples. Crystallographic variations in martensitic phase, including non-modulated (NM) martensite, modulated (5M or 7M) martensite, were found in the diffusion couples. The 5M and 7M martensites were only found near the interface between austenite and martensite, corresponding to compositions with lower e/a ratio. The NM martensites were found mostly away from the interface region, with high e/a ratios. The tetragonality ratio (c/a) for NM martensite generally increases with e/a ratio, but also depended on the composition. All martensitic microstructure consists of twinned variants with different orientations that were documented using electron diffraction. The twinning relationship along with the c/a ratio was correlated to martensitic transformation temperature. In addition, pre-martensitic state has been clearly observed in the cubic austenitic phase region, with distinctive tweed microstructure originating from the local lattice distortions. Mechanical properties including reduced elastic modulus (Er) and hardness (H) as a function of composition were measured and analyzed by nanoindentation. A decrease of Er and H was observed with Mn or Ni substituting Ga, and Ni substituting Mn for the austenitic phase. However, an opposite trend was found for the martensitic phase. The softening of the elastic constants near the vicinity of martensitic transformation contributed to the sharp decrease in Er and H near the interface region. The measured Er and H had larger scatter for the martensitic phase than those for the austenitic phase. The scatters observed were attributed to the martensitic variants with different orientations. Contribution from the variation in grain orientation or shape memory effect was determined to be small in this investigation.
Show less - Date Issued
- 2016
- Identifier
- CFE0006204, ucf:51108
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006204
- Title
- PROBING THE NANOSCALE INTERACTION FORCES AND ELASTIC PROPERTIES OF ORGANIC AND INORGANIC MATERIALS USING FORCE-DISTANCE (F-D) SPECTROSCOPY.
- Creator
-
Vincent, Abhilash, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface...
Show moreDue to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 õN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Show less - Date Issued
- 2010
- Identifier
- CFE0003079, ucf:48305
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003079
- Title
- Deposition and characterization studies of boron carbon nitride (BCN) thin films prepared by dual target sputtering.
- Creator
-
Prakash, Adithya, Sundaram, Kalpathy, Kapoor, Vikram, Yuan, Jiann-Shiun, Jin, Yier, Chow, Louis, University of Central Florida
- Abstract / Description
-
As complementary metal-oxide semiconductor (CMOS) devices shrink to smaller size, the problems related to circuit performance such as critical path signal delay are becoming a pressing issue. These delays are a result of resistance and capacitance product (RC time constant) of the interconnect circuit. A novel material with reduced dielectric constants may compromise both the thermal and mechanical properties that can lead to die cracking during package and other reliability issues. Boron...
Show moreAs complementary metal-oxide semiconductor (CMOS) devices shrink to smaller size, the problems related to circuit performance such as critical path signal delay are becoming a pressing issue. These delays are a result of resistance and capacitance product (RC time constant) of the interconnect circuit. A novel material with reduced dielectric constants may compromise both the thermal and mechanical properties that can lead to die cracking during package and other reliability issues. Boron carbon nitride (BCN) compounds have been expected to combine the excellent properties of boron carbide (B4C), boron nitride (BN) and carbon nitride (C3N4), with their properties adjustable, depending on composition and structure. BCN thin film is a good candidate for being hard, dense, pore-free, low-k dielectric with values in the range of 1.9 to 2.1. Excellent mechanical properties such as adhesion, high hardness and good wear resistance have been reported in the case of sputtered BCN thin films. Problems posed by high hardness materials such as diamonds in high cutting applications and the comparatively lower hardness of c-BN gave rise to the idea of a mixed phase that can overcome these problems with a minimum compromise in its properties. A hybrid between semi-metallic graphite and insulating h-BN may show adjusted semiconductor properties. BCN exhibits the potential to control optical bandgap (band gap engineering) by atomic composition, hence making it a good candidate for electronic and photonic devices. Due to tremendous bandgap engineering capability and refractive index variability in BCN thin film, it is feasible to develop filters and mirrors for use in ultra violet (UV) wavelength region. It is of prime importance to understand process integration challenges like deposition rates, curing, and etching, cleaning and polishing during characterization of low-k films. The sputtering technique provides unique advantages over other techniques such as freedom to choose the substrate material and a uniform deposition over relatively large area. BCN films are prepared by dual target reactive magnetron sputtering from a B4C and BN targets using DC and RF powers respectively. In this work, an investigation of mechanical, optical, chemical, surface and device characterizations is undertaken. These holistic and thorough studies, will provide the insight into the capability of BCN being a hard, chemically inert, low-k, wideband gap material, as a potential leader in semiconductor and optics industry.
Show less - Date Issued
- 2016
- Identifier
- CFE0006378, ucf:51496
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006378
- Title
- The Influence of Alloying Additions on Diffusion and Strengthening of Magnesium.
- Creator
-
Kammerer, Catherine, Sohn, Yongho, Coffey, Kevin, Challapalli, Suryanarayana, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Magnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate...
Show moreMagnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate development of suitable wrought Mg alloys, an integrated Materials Genomic approach must be taken where thermodynamics and diffusion kinetic parameters form the basis of alloy design, process development, and properties-driven applications.The objective of this research effort is twofold: first, to codify the relationship between diffusion behavior, crystal structure, and mechanical properties; second, to provide fundamental data for the purpose of wrought Mg alloy development. Together, the principal deliverable of this work is an advanced understanding of Mg systems. To that end, the objective is accomplished through an aggregate of studies. The solid-to-solid diffusion bonding technique is used to fabricate combinatorial samples of Mg-Al-Zn ternary and Mg-Al, Mg-Zn, Mg-Y, Mg-Gd, and Mg-Nd binary systems. The combinatorial samples are subjected to structural and compositional characterization via Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy, Electron Probe Microanalysis, and analytical Transmission Electron Microscopy. Interdiffusion in binary Mg systems is determined by Sauer-Freise and Boltzmann-Matano methods. Kirkaldy's extension of the Boltzmann-Matano method, on the basis of Onsager's formalism, is employed to quantify the main- and cross-interdiffusion coefficients in ternary Mg solid solutions. Impurity diffusion coefficients are determined by way of the Hall method. The intermetallic compounds and solid solutions formed during diffusion bonding of the combinatorial samples are subjected to nanoindentation tests, and the nominal and compositionally dependent mechanical properties are extracted by the Oliver-Pharr method.In addition to bolstering the scantly available experimental data and first-principles computations, this work delivers several original contributions to the state of Mg alloy knowledge. The influence of Zn concentration on Al impurity diffusion in binary Mg(Zn) solid solution is quantified to impact both the pre-exponential factor and activation energy. The main- and cross-interdiffusion coefficients in the ternary Mg solid solution of Mg-Al-Zn are reported wherein the interdiffusion of Zn is shown to strongly influence the interdiffusion of Mg and Al. A critical examination of rare earth element additions to Mg is reported, and a new phase in thermodynamic equilibrium with Mg-solid solution is identified in the Mg-Gd binary system. It is also demonstrated that Mg atoms move faster than Y atoms. For the first time the mechanical properties of intermetallic compounds in several binary Mg systems are quantified in terms of hardness and elastic modulus, and the influence of solute concentration on solid solution strengthening in binary Mg alloys is reported. The most significant and efficient solid solution strengthening is achieved by alloying Mg with Gd. The Mg-Nd and Mg-Gd intermetallic compounds exhibited better room temperature creep resistance than intermetallic compounds of Mg-Al. The correlation between the concentration dependence of mechanical properties and atomic diffusion is deliberated in terms of electronic nature of the atomic structure.
Show less - Date Issued
- 2015
- Identifier
- CFE0005815, ucf:50043
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005815