Current Search: Neuroevolution (x)
View All Items
- Title
- LEARNING FROM GEOMETRY IN LEARNING FOR TACTICAL AND STRATEGIC DECISION DOMAINS.
- Creator
-
Gauci, Jason, Stanley, Kenneth, University of Central Florida
- Abstract / Description
-
Artificial neural networks (ANNs) are an abstraction of the low-level architecture of biological brains that are often applied in general problem solving and function approximation. Neuroevolution (NE), i.e. the evolution of ANNs, has proven effective at solving problems in a variety of domains. Information from the domain is input to the ANN, which outputs its desired actions. This dissertation presents a new NE algorithm called Hypercube-based NeuroEvolution of Augmenting Topologies ...
Show moreArtificial neural networks (ANNs) are an abstraction of the low-level architecture of biological brains that are often applied in general problem solving and function approximation. Neuroevolution (NE), i.e. the evolution of ANNs, has proven effective at solving problems in a variety of domains. Information from the domain is input to the ANN, which outputs its desired actions. This dissertation presents a new NE algorithm called Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT), based on a novel indirect encoding of ANNs. The key insight in HyperNEAT is to make the algorithm aware of the geometry in which the ANNs are embedded and thereby exploit such domain geometry to evolve ANNs more effectively. The dissertation focuses on applying HyperNEAT to tactical and strategic decision domains. These domains involve simultaneously considering short-term tactics while also balancing long-term strategies. Board games such as checkers and Go are canonical examples of such domains; however, they also include real-time strategy games and military scenarios. The dissertation details three proposed extensions to HyperNEAT designed to work in tactical and strategic decision domains. The first is an action selector ANN architecture that allows the ANN to indicate its judgements on every possible action all at once. The second technique is called substrate extrapolation. It allows learning basic concepts at a low resolution, and then increasing the resolution to learn more advanced concepts. The final extension is geometric game-tree pruning, whereby HyperNEAT can endow the ANN the ability to focus on specific areas of a domain (such as a checkers board) that deserve more inspection. The culminating contribution is to demonstrate the ability of HyperNEAT with these extensions to play Go, a most challenging game for artificial intelligence, by combining HyperNEAT with UCT.
Show less - Date Issued
- 2010
- Identifier
- CFE0003464, ucf:48962
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003464
- Title
- MULTIAGENT LEARNING THROUGH INDIRECT ENCODING.
- Creator
-
D'Ambrosio, David, Stanley, Kenneth, University of Central Florida
- Abstract / Description
-
Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby...
Show moreDesigning a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other.In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent's location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(lamba) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding.
Show less - Date Issued
- 2011
- Identifier
- CFE0003661, ucf:48812
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003661
- Title
- Necessary Conditions for Open-Ended Evolution.
- Creator
-
Soros, Lisa, Stanley, Kenneth, Gonzalez, Avelino, Wiegand, Rudolf, Cash, Mason, University of Central Florida
- Abstract / Description
-
Evolution on Earth is widely considered to be an effectively endless process. Though this phenomenon of open-ended evolution (OEE) has been a topic of interest in the artificial life communitysince its beginnings, the field still lacks an empirically validated theory of what exactly is necessary to reproduce the phenomenon in general (including in domains quite unlike Earth). Thisdissertation (1) enumerates a set of conditions hypothesized to be necessary for OEE in addition to (2)...
Show moreEvolution on Earth is widely considered to be an effectively endless process. Though this phenomenon of open-ended evolution (OEE) has been a topic of interest in the artificial life communitysince its beginnings, the field still lacks an empirically validated theory of what exactly is necessary to reproduce the phenomenon in general (including in domains quite unlike Earth). Thisdissertation (1) enumerates a set of conditions hypothesized to be necessary for OEE in addition to (2) introducing an artificial life world called Chromaria that incorporates each of the hypothesizednecessary conditions. It then (3) describes a set of experiments with Chromaria designed to empirically validate the hypothesized necessary conditions. Thus, this dissertation describes the firstscientific endeavor to systematically test an OEE framework in an alife world and thereby make progress towards solving an open question not just for evolutionary computation and artificial life,but for science in general.
Show less - Date Issued
- 2018
- Identifier
- CFE0007247, ucf:52205
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007247
- Title
- Evolution Through the Search for Novelty.
- Creator
-
Lehman, Joel, Stanley, Kenneth, Gonzalez, Avelino, Wiegand, Rudolf, Hoffman, Eric, University of Central Florida
- Abstract / Description
-
I present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in...
Show moreI present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in evolutionary computation, deception has inspired many techniques designed to mitigate it. However, nearly all such methods are still ultimately susceptible to deceptive local optima because they still measure progress with respect to the objective, which this dissertation will show is often a broken compass. Furthermore, although novelty search completely abandons the objective, it counterintuitively often outperforms methods that search directly for the objective in deceptive tasks and can induce evolutionary dynamics closer in spirit to natural evolution. The main contributions are to (1) introduce novelty search, an example of an effective search method that is not guided by actively measuring or encouraging objective progress; (2) validate novelty search by applying it to biped locomotion; (3) demonstrate novelty search's benefits for evolvability (i.e. the abilityof an organism to further evolve) in a variety of domains; (4) introduce an extension of novelty search called minimal criteria novelty search that brings a new abstraction of natural evolution to evolutionary computation (i.e. evolution as a search for many ways of meeting the minimal criteria of life); (5) present a second extension of novelty search called novelty search with local competition that abstracts evolution instead as a process driven towards diversity with competition playing a subservient role; and (6) evolve a diversity of functional virtual creatures in a single run as a culminating application of novelty search with local competition. Overall these contributions establish novelty search as an important new research direction for the field of evolutionary computation.
Show less - Date Issued
- 2012
- Identifier
- CFE0004398, ucf:49390
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004398
- Title
- Towards Evolving More Brain-Like Artificial Neural Networks.
- Creator
-
Risi, Sebastian, Stanley, Kenneth, Hughes, Charles, Sukthankar, Gita, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
An ambitious long-term goal for neuroevolution, which studies how artificial evolutionary processes can be driven to produce brain-like structures, is to evolve neurocontrollers with a high density of neurons and connections that can adapt and learn from past experience. Yet while neuroevolution has produced successful results in a variety of domains, the scale of natural brains remains far beyond reach. In this dissertation two extensions to the recently introduced Hypercube-based...
Show moreAn ambitious long-term goal for neuroevolution, which studies how artificial evolutionary processes can be driven to produce brain-like structures, is to evolve neurocontrollers with a high density of neurons and connections that can adapt and learn from past experience. Yet while neuroevolution has produced successful results in a variety of domains, the scale of natural brains remains far beyond reach. In this dissertation two extensions to the recently introduced Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach are presented that are a step towards more brain-like artificial neural networks (ANNs). First, HyperNEAT is extended to evolve plastic ANNs that can learn from past experience. This new approach, called adaptive HyperNEAT, allows not only patterns of weights across the connectivity of an ANN to be generated by a function of its geometry, but also patterns of arbitrary local learning rules. Second, evolvable-substrate HyperNEAT (ES-HyperNEAT) is introduced, which relieves the user from deciding where the hidden nodes should be placed in a geometry that is potentially infinitely dense. This approach not only can evolve the location of every neuron in the network, but also can represent regions of varying density, which means resolution can increase holistically over evolution. The combined approach, adaptive ES-HyperNEAT, unifies for the first time in neuroevolution the abilities to indirectly encode connectivity through geometry, generate patterns of heterogeneous plasticity, and simultaneously encode the density and placement of nodes in space. The dissertation culminates in a major application domain that takes a step towards the general goal of adaptive neurocontrollers for legged locomotion.
Show less - Date Issued
- 2012
- Identifier
- CFE0004287, ucf:49477
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004287
- Title
- Quality Diversity: Harnessing Evolution to Generate a Diversity of High-Performing Solutions.
- Creator
-
Pugh, Justin, Stanley, Kenneth, Wu, Annie, Sukthankar, Gita, Garibay, Ivan, University of Central Florida
- Abstract / Description
-
Evolution in nature has designed countless solutions to innumerable interconnected problems, giving birth to the impressive array of complex modern life observed today. Inspired by this success, the practice of evolutionary computation (EC) abstracts evolution artificially as a search operator to find solutions to problems of interest primarily through the adaptive mechanism of survival of the fittest, where stronger candidates are pursued at the expense of weaker ones until a solution of...
Show moreEvolution in nature has designed countless solutions to innumerable interconnected problems, giving birth to the impressive array of complex modern life observed today. Inspired by this success, the practice of evolutionary computation (EC) abstracts evolution artificially as a search operator to find solutions to problems of interest primarily through the adaptive mechanism of survival of the fittest, where stronger candidates are pursued at the expense of weaker ones until a solution of satisfying quality emerges. At the same time, research in open-ended evolution (OEE) draws different lessons from nature, seeking to identify and recreate processes that lead to the type of perpetual innovation and indefinitely increasing complexity observed in natural evolution. New algorithms in EC such as MAP-Elites and Novelty Search with Local Competition harness the toolkit of evolution for a related purpose: finding as many types of good solutions as possible (rather than merely the single best solution). With the field in its infancy, no empirical studies previously existed comparing these so-called quality diversity (QD) algorithms. This dissertation (1) contains the first extensive and methodical effort to compare different approaches to QD (including both existing published approaches as well as some new methods presented for the first time here) and to understand how they operate to help inform better approaches in the future.It also (2) introduces a new technique for encoding neural networks for evolution with indirect encoding that contain multiple sensory or output modalities.Further, it (3) explores the idea that QD can act as an engine of open-ended discovery by introducing an expressive platform called Voxelbuild where QD algorithms continually evolve robots that stack blocks in new ways. A culminating experiment (4) is presented that investigates evolution in Voxelbuild over a very long timescale. This research thus stands to advance the OEE community's desire to create and understand open-ended systems while also laying the groundwork for QD to realize its potential within EC as a means to automatically generate an endless progression of new content in real-world applications.
Show less - Date Issued
- 2019
- Identifier
- CFE0007513, ucf:52638
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007513
- Title
- Novelty-Assisted Interactive Evolution of Control Behaviors.
- Creator
-
Woolley, Brian, Stanley, Kenneth, Hughes, Charles, Gonzalez, Avelino, Wu, Annie, Hancock, Peter, University of Central Florida
- Abstract / Description
-
The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact...
Show moreThe field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge.To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches.
Show less - Date Issued
- 2012
- Identifier
- CFE0004462, ucf:49335
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004462
- Title
- Functional Scaffolding for Musical Composition: A New Approach in Computer-Assisted Music Composition.
- Creator
-
Hoover, Amy, Stanley, Kenneth, Wu, Annie, Laviola II, Joseph, Anderson, Thaddeus, University of Central Florida
- Abstract / Description
-
While it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This...
Show moreWhile it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This representation, called functional scaffolding for musical composition (FSMC), exploits a simple yet powerful property of multipart compositions: The pattern of notes and rhythms in different instrumental parts of the same song are functionally related. That is, in principle, one part can be expressed as a function of another. Music in FSMC is represented accordingly as a functional relationship between an existing human composition, or scaffold, and an additional generated voice. This relationship is encoded by a type of artificial neural network called a compositional pattern producing network (CPPN). A human user without any musical expertise can then explore how these additional generated voices should relate to the scaffold through an interactive evolutionary process akin to animal breeding. The utility of this insight is validated by two implementations of FSMC called NEAT Drummer and MaestroGenesis, that respectively help users tailor drum patterns and complete multipart arrangements from as little as a single original monophonic track. The five major contributions of this work address the overarching hypothesis in this dissertation that functional relationships alone, rather than specialized music theory, are sufficient for generating plausible additional voices. First, to validate FSMC and determine whether plausible generated voices result from the human-composed scaffold or intrinsic properties of the CPPN, drum patterns are created with NEAT Drummer to accompany several different polyphonic pieces. Extending the FSMC approach to generate pitched voices, the second contribution reinforces the importance of functional transformations through quality assessments that indicate that some partially FSMC-generated pieces are indistinguishable from those that are fully human. While the third contribution focuses on constructing and exploring a space of plausible voices with MaestroGenesis, the fourth presents results from a two-year study where students discuss their creative experience with the program. Finally, the fifth contribution is a plugin for MaestroGenesis called MaestroGenesis Voice (MG-V) that provides users a more natural way to incorporate MaestroGenesis in their creative endeavors by allowing scaffold creation through the human voice. Together, the chapters in this dissertation constitute a comprehensive approach to assisted music generation, enabling creativity without the need for musical expertise.
Show less - Date Issued
- 2014
- Identifier
- CFE0005350, ucf:50495
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005350