Current Search: Phase Boundaries (x)
View All Items
- Title
- PHENOMENOLOGY AND EXPERIMENTAL OBSERVATIONS IN HIGH TEMPERATURE TERNARY INTERDIFFUSION.
- Creator
-
Elliott, Abby Lee, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
A new method to extract composition dependent ternary interdiffusion coefficients from a single diffusion couple experiment is presented. The calculations involve direct determination of interdiffusion fluxes from experimental concentration profiles and local integration and differentiation of Onsager's formalism. This new technique was applied to concentration profiles obtained from selected semi-infinite, single-phase diffusion couple experiments in the Cu-Ni-Zn, Fe-Ni-Al, and Ni-Cr-Al...
Show moreA new method to extract composition dependent ternary interdiffusion coefficients from a single diffusion couple experiment is presented. The calculations involve direct determination of interdiffusion fluxes from experimental concentration profiles and local integration and differentiation of Onsager's formalism. This new technique was applied to concentration profiles obtained from selected semi-infinite, single-phase diffusion couple experiments in the Cu-Ni-Zn, Fe-Ni-Al, and Ni-Cr-Al systems. These couples exhibit features such as uphill diffusion and zero flux planes. The interdiffusion coefficients from the new technique along with coefficients reported from other methods are graphed as functions of composition. The coefficients calculated from the new technique are consistent with those determined from Boltzmann-Matano analysis and an alternate analysis based on the concept of average ternary interdiffusion coefficients. The concentration profiles generated from the error function solutions using the calculated interdiffusion coefficients are in good agreement with the experimental profiles including those exhibiting uphill diffusion. The new technique is checked for accuracy and consistency by back-calculating known interdiffusion coefficients; in this exercise, the new method accurately predicts constant diffusivity.After rigorous verification, the new technique is applied to previously unexamined couples in the Ni-Pt-Al system. With Ni as the dependent component, the main coefficients are shown to be relatively constant and the cross coefficients are negative. The interdiffusion coefficient representing the contribution of the concentration gradient of Pt to the interdiffusion flux of Al is relatively large for couples whose Al content is low, indicating that Pt has a significant effect on Al when Al concentration is low.Another important aspect of analyzing diffusional interactions is the movement of single and multi-phase boundaries within a diffusion couple. Phase boundaries for an n-component system are newly classified and boundary movement is analyzed in terms of degrees of freedom. Experimental evidence of a category 2:1 boundary is presented with a solid-to-solid semi-infinite diffusion couple in the Fe-Ni-Al system with two single-phase terminal alloys. The diffusion path for this couple surprisingly passes through the vertex of the equilibrium tie triangle on the phase diagram to exhibit three phase equilibria in a ternary system. Here is shown for the first time experimental verification of this phenomenon.
Show less - Date Issued
- 2004
- Identifier
- CFE0000016, ucf:46101
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000016
- Title
- Advanced Control Techniques for Efficiency and Power Density Improvement of a Three-Phase Microinverter.
- Creator
-
Tayebi, Seyed Milad, Batarseh, Issa, Mikhael, Wasfy, Sundaram, Kalpathy, Sun, Wei, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Inverters are widely used in photovoltaic (PV) based power generation systems. Most of these systems have been based on medium to high power string inverters. Microinverters are gaining popularity over their string inverter counterparts in PV based power generation systems due to maximized energy harvesting, high system reliability, modularity, and simple installation. They can be deployed on commercial buildings, residential rooftops, electric poles, etc and have a huge potential market....
Show moreInverters are widely used in photovoltaic (PV) based power generation systems. Most of these systems have been based on medium to high power string inverters. Microinverters are gaining popularity over their string inverter counterparts in PV based power generation systems due to maximized energy harvesting, high system reliability, modularity, and simple installation. They can be deployed on commercial buildings, residential rooftops, electric poles, etc and have a huge potential market. Emerging trend in power electronics is to increase power density and efficiency while reducing cost. A powerful tool to achieve these objectives is the development of an advanced control system for power electronics. In low power applications such as solar microinverters, increasing the switching frequency can reduce the size of passive components resulting in higher power density. However, switching losses and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Soft switching techniques have been proposed to overcome these issues. This dissertation presents several innovative control techniques which are used to increase efficiency and power density while reducing cost. Dynamic dead time optimization and dual zone modulation techniques have been proposed in this dissertation to significantly improve the microinverter efficiency. In dynamic dead time optimization technique, pulse width modulation (PWM) dead times are dynamically adjusted as a function of load current to minimize MOSFET body diode conduction time which reduces power dissipation. This control method also improves total harmonic distortion (THD) of the inverter output current. To further improve the microinverter efficiency, a dual-zone modulation has been proposed which introduces one more soft-switching transition and lower inductor peak current compared to the other boundary conduction mode (BCM) modulation methods.In addition, an advanced DC link voltage control has been proposed to increase the microinverter power density. This concept minimizes the storage capacitance by allowing greater voltage ripple on the DC link. Therefore, the microinverter reliability can be significantly increased by replacing electrolytic capacitors with film capacitors. These control techniques can be readily implemented on any inverter, motor controller, or switching power amplifier. Since there is no circuit modification involved in implementation of these control techniques and can be easily added to existing controller firmware, it will be very attractive to any potential licensees.
Show less - Date Issued
- 2017
- Identifier
- CFE0007136, ucf:52328
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007136