View All Items
- Title
- ULTRA-WIDE BAND IN COMMUNICATIONS: PERFORMANCE ANALYSIS AND ENHANCEMENTS.
- Creator
-
Berksoy, Burak, WEI, Lei, University of Central Florida
- Abstract / Description
-
Over the last ten years, Ultra-Wide Band (UWB) technology has attracted tremendous research attention. Frequency allocation of 3.1-10.6 GHz for UWB application by FCC made it apparent that UWB will be the technology for future wireless high speed communication applications. With the promise of high data rates (high channel capacity), UWB also offers advantages such as communication security, high multi-path resolution, good penetration capability, ability to coexist with other communication...
Show moreOver the last ten years, Ultra-Wide Band (UWB) technology has attracted tremendous research attention. Frequency allocation of 3.1-10.6 GHz for UWB application by FCC made it apparent that UWB will be the technology for future wireless high speed communication applications. With the promise of high data rates (high channel capacity), UWB also offers advantages such as communication security, high multi-path resolution, good penetration capability, ability to coexist with other communication schemes in the same band, and finally, circuit simplicity. The theoretical advantages of UWB has made it a great candidate for short distance communications, however, UWB communications have many challenges, for example, sub-nanosecond pulse generation, timing sensitivity of modulation and synchronization, flat antenna performance over a wide bandwidth, effect of existing systems on UWB systems. In order to experiment with various UWB modulation schemes, and to study transmitter and receiver structures, an accurate channel model need be established. In this dissertation, our first contribution is to evaluate and implement two major statistical channel models. The first model is proposed by AT\&T Labs and is in the form of an autoregressive IIR filter. Although this is an accurate channel model to represent UWB behavior, it is proposed before the allocation of 3.1-10.6 GHz frequency band, hence, it could not simulate the correct frequency spectrum. The second model is proposed by Saleh and Valenzuela, which has been widely accepted by UWB community to be the most accurate channel model for UWB systems. Recently disbanded task group 802.15.3a which was assigned to standardize a UWB communication scheme has also accepted the latter model. Our second contribution is to derive optimal pulses for PPM signals. Using the accurate channel model in computer simulations, we experimented on various UWB communication schemes. We found that the traditional UWB pulses being used in pulse position modulated UWB systems did not perform optimally. A set of optimized UWB pulses and the methodology to calculate optimal pulses for any modulation index for PPM systems have been proposed in this dissertation. It is found that the optimal pulse can improve the performance of UWB systems by as much as 0.7 dB. With the PPM pulse optimization, the theoretical performance limits of PPM systems are derived. The third contribution from this dissertation is to design near optimal practical implementable receiver structures. Some of the results obtained from PPM pulse optimization are found to be theoretical and not practical. More practical approach to the receiver structures were needed for industrial interest. We proposed simple sub-optimal receiver structures that are able to perform only a few dB less than the optimal receivers are proposed. These simple, low-cost receiver structures are strong alternatives to the complex traditional optimal receivers.
Show less - Date Issued
- 2008
- Identifier
- CFE0002106, ucf:47531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002106
- Title
- ADVANCED CODING AND MODULATION FOR ULTRA-WIDEBAND AND IMPULSIVE NOISES.
- Creator
-
Yang, Libo, Wei, Lei, University of Central Florida
- Abstract / Description
-
The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels....
Show moreThe ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in \cite, which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL.
Show less - Date Issued
- 2007
- Identifier
- CFE0001836, ucf:47342
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001836
- Title
- SUB-OPTIMAL ULTRA-WIDE BAND RECEIVERS.
- Creator
-
Bhuvanendran, Nilesh, Lei Wei, Dr, University of Central Florida
- Abstract / Description
-
Ultra-wide Band (UWB) has sparked a lot of interest lately from theindustry and academia. The growing capacity of the wireless industry is requires a new communication system that satis¯es the high data rate which does not interfere with existing RF systems. UWB promises to be this new technology. UWB also promises low power, low cost and °exibility. The UWB Channel opens up a huge new wireless channel with Giga Hertz Capacities as well as the highest spatial capacities measured in...
Show moreUltra-wide Band (UWB) has sparked a lot of interest lately from theindustry and academia. The growing capacity of the wireless industry is requires a new communication system that satis¯es the high data rate which does not interfere with existing RF systems. UWB promises to be this new technology. UWB also promises low power, low cost and °exibility. The UWB Channel opens up a huge new wireless channel with Giga Hertz Capacities as well as the highest spatial capacities measured in bits per hertz per square meter. When properly implemented UWB channel can share spectrum with traditional radio systems without causing harmful interference. In this thesiswe studied and compared several reduced complexity sub-optimal Ultra-Wide Band receivers. These receivers include auto correlation receiver, the square value detector and the absolute value detector are studied. We consider OOK and PPM modulation schemes. We examine these schemes and the receivers on Gaussian and UWB indoor channels. We compare the performance with optimal receivers.A transmitter receiver system using 0.1us pulses implemented usingexisting hardware. A packet consisting of 24 bits were transmitted and the received signal could be veri¯ed in real time using a vector signal analyzer. The results show sub-optimal receivers provide a better trade off between robust,complexity and performance.
Show less - Date Issued
- 2004
- Identifier
- CFE0000106, ucf:46186
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000106
- Title
- ULTRA-WIDEBAND ORTHOGONAL FREQUENCY CODED SAW CORRELATORS.
- Creator
-
Gallagher, Daniel, Malocha, Donald, University of Central Florida
- Abstract / Description
-
Ultrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in...
Show moreUltrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in advanced UWB communication systems. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of CDMA because of the increased bandwidth; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces much of the signal processing requirements. The OFC SAW correlator device consists of a dispersive OFC transducer and a wideband output transducer. The dispersive filter was designed using seven contiguous chip frequencies within the transducer. Each chip is weighted in the transducer to account for the varying conductance of the chips and to compensate for the output transducer apodization. Experimental correlator results of an OFC SAW correlation filter are presented. The dispersive filter is designed using seven contiguous chip frequencies within the transducer. SAW correlators with fractional bandwidth of approximately 29% were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz and the filter has a processing gain of 49. A coupling of modes (COM) model is used to predict the experimental SAW filter response. Discussion of the filter design, analysis and measurements are presented. Results are shown for operation in a matched filter correlator for use in an UWB communication system and compared to predictions.
Show less - Date Issued
- 2007
- Identifier
- CFE0001820, ucf:47338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001820
- Title
- HIGH SPEED TURBO TCM OFDM FOR UWB AND POWERLINE SYSTEM.
- Creator
-
WANG, YANXIA, Wei, Lei, University of Central Florida
- Abstract / Description
-
Turbo Trellis-Coded Modulation (TTCM) is an attractive scheme for higher data rate transmission, since it combines the impressive near Shannon limit error correcting ability of turbo codes with the high spectral efficiency property of TCM codes. We build a punctured parity-concatenated trellis codes in which a TCM code is used as the inner code and a simple parity-check code is used as the outer code. It can be constructed by simple repetition, interleavers, and TCM and functions as standard...
Show moreTurbo Trellis-Coded Modulation (TTCM) is an attractive scheme for higher data rate transmission, since it combines the impressive near Shannon limit error correcting ability of turbo codes with the high spectral efficiency property of TCM codes. We build a punctured parity-concatenated trellis codes in which a TCM code is used as the inner code and a simple parity-check code is used as the outer code. It can be constructed by simple repetition, interleavers, and TCM and functions as standard TTCM but with much lower complexity regarding real world implementation. An iterative bit MAP decoding algorithm is associated with the coding scheme. Orthogonal Frequency Division Multiplexing (OFDM) modulation has been a promising solution for efficiently capturing multipath energy in highly dispersive channels and delivering high data rate transmission. One of UWB proposals in IEEE P802.15 WPAN project is to use multi-band OFDM system and punctured convolutional codes for UWB channels supporting data rate up to 480Mb/s. The HomePlug Networking system using the medium of power line wiring also selects OFDM as the modulation scheme due to its inherent adaptability in the presence of frequency selective channels, its resilience to jammer signals, and its robustness to impulsive noise in power line channel. The main idea behind OFDM is to split the transmitted data sequence into N parallel sequences of symbols and transmit on different frequencies. This structure has the particularity to enable a simple equalization scheme and to resist to multipath propagation channel. However, some carriers can be strongly attenuated. It is then necessary to incorporate a powerful channel encoder, combined with frequency and time interleaving. We examine the possibility of improving the proposed OFDM system over UWB channel and HomePlug powerline channel by using our Turbo TCM with QAM constellation for higher data rate transmission. The study shows that the system can offer much higher spectral efficiency, for example, 1.2 Gbps for OFDM/UWB which is 2.5 times higher than the current standard, and 39 Mbps for OFDM/HomePlug1.0 which is 3 times higher than current standard. We show several essential requirements to achieve high rate such as frequency and time diversifications, multi-level error protection. Results have been confirmed by density evolution. The effect of impulsive noise on TTCM coded OFDM system is also evaluated. A modified iterative bit MAP decoder is provided for channels with impulsive noise with different impulsivity.
Show less - Date Issued
- 2006
- Identifier
- CFE0000943, ucf:46745
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000943
- Title
- SAW REFLECTIVE TRANSDUCERS AND ANTENNAS FOR ORTHOGONAL FREQUENCY CODED SAW SENSORS.
- Creator
-
Santos, Bianca Maria, Malocha, Donald, University of Central Florida
- Abstract / Description
-
Passive sensors that vary its impedance per measured parameter may be used with surface acoustic wave (SAW) reflective transducers (SRT) for wireless acquisition of the measurand. The device is composed of two transducers, where one, which may be attached to an antenna, is used to launch the wave within the device substrate, and the other is where the sensor load is attached to. The latter is able to reflect the incident wave. How much power is reflected is determined by the attached sensor...
Show morePassive sensors that vary its impedance per measured parameter may be used with surface acoustic wave (SAW) reflective transducers (SRT) for wireless acquisition of the measurand. The device is composed of two transducers, where one, which may be attached to an antenna, is used to launch the wave within the device substrate, and the other is where the sensor load is attached to. The latter is able to reflect the incident wave. How much power is reflected is determined by the attached sensor load. Amplitude variations as well as peak frequency variations of the SRT reflectivity response are explored in this thesis. SAW passive temperature sensors with an orthogonal frequency coded (OFC) time response were previously investigated and prove to be ideal for use in harsh environments. Each sensor is distinguishable from the other due to the OFC code embedded within its time response. However, this coding technique poses a difficulty in designing antennas for the sensor due to its inherently wide bandwidth, and capacitive, non-uniform input impedance. This work covers antenna design and testing for the 250MHz wireless temperature acquisition prototype with a 28% fractional bandwidth, and for the 912MHz system which has 10% fractional bandwidth. Apart from the tag, antennas for the transmitter and receiver were designed for 50 Ohm matching with the required bandwidth maintained. Wireless temperature acquisition runs for the 250MHz prototype were successfully performed and show good agreement with measurements made by a thermocouple. Since a transceiver for the 912MHz system is not complete, the performance of the antennas was gauged by observing the signal transmitted wirelessly by the SAW tag and by comparing this with the sensor time response measured directly by a vector network analyzer.
Show less - Date Issued
- 2009
- Identifier
- CFE0002649, ucf:48199
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002649
- Title
- ANALYSIS OF TIME SYNCHRONIZATION ERRORS IN HIGH DATA RATE ULTRAWIDEBAND ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING DATA LINKS.
- Creator
-
Bates, Lakesha, Jones, W. Linwood, University of Central Florida
- Abstract / Description
-
Emerging Ultra Wideband (UWB) Orthogonal Frequency Division Multiplexing (OFDM) systems hold the promise of delivering wireless data at high speeds, exceeding hundreds of megabits per second over typical distances of 10 meters or less. The purpose of this Thesis is to estimate the timing accuracies required with such systems in order to achieve Bit Error Rates (BER) of the order of magnitude of 10-12 and thereby avoid overloading the correction of irreducible errors due to misaligned timing...
Show moreEmerging Ultra Wideband (UWB) Orthogonal Frequency Division Multiplexing (OFDM) systems hold the promise of delivering wireless data at high speeds, exceeding hundreds of megabits per second over typical distances of 10 meters or less. The purpose of this Thesis is to estimate the timing accuracies required with such systems in order to achieve Bit Error Rates (BER) of the order of magnitude of 10-12 and thereby avoid overloading the correction of irreducible errors due to misaligned timing errors to a small absolute number of bits in error in real-time relative to a data rate of hundreds of megabits per second. Our research approach involves managing bit error rates through identifying maximum timing synchronization errors. Thus, it became our research goal to determine the timing accuracies required to avoid operation of communication systems within the asymptotic region of BER flaring at low BERs in the resultant BER curves. We propose pushing physical layer bit error rates to below 10-12 before using forward error correction (FEC) codes. This way, the maximum reserve is maintained for the FEC hardware to correct for burst as well as recurring bit errors due to corrupt bits caused by other than timing synchronization errors.
Show less - Date Issued
- 2004
- Identifier
- CFE0000197, ucf:46173
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000197
- Title
- Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators.
- Creator
-
Gallagher, Daniel, Malocha, Donald, Delfyett, Peter, Richie, Samuel, Weeks, Arthur, Youngquist, Robert, University of Central Florida
- Abstract / Description
-
Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator...
Show moreUltra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter.Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal.The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq (TM) system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I (&) Q) pairs and upconverted to a 491.52 MHz operational frequency.The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussedwith before and after results showing approximately 10:1 improvement.Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented.
Show less - Date Issued
- 2015
- Identifier
- CFE0005794, ucf:50054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005794