Current Search: beam shaping (x)
View All Items
- Title
- ANNULAR BEAM SHAPING AND OPTICAL TREPANNING.
- Creator
-
Zeng, Danyong, Kar, Aravinda, University of Central Florida
- Abstract / Description
-
Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The...
Show morePercussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus. Two refractive arrangements have been presented in this study. Geometric optics, or ray optics, describes light propagation in terms of rays. However, it is a simplification of optics, and fails to account for many important optical effects such as diffraction and polarization. The diffractive behaviors of this optical trepanning system are stimulated and analyzed based on the Fresnel diffraction integral. Diffraction patterns of the resulting optical system are measured using a laser beam analyzer and compared with the theoretical results. Based on the theoretical and experimental results, the effects of experimental parameters are discussed. We have designed the annular beam shaping optical elements and the gas delivery system to construct an optical trepanning system. Laser drilling experiments are performed on the Stainless Steel-316 (SS 316) plate and the Inconel 718 (IN 718) plate. The geometry of the trepanning holes with different sizes is presented in this study.
Show less - Date Issued
- 2006
- Identifier
- CFE0001333, ucf:46965
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001333
- Title
- THERMAL MODELING AND LASER BEAM SHAPING FOR MICROVIAS DRILLING IN HIGH DENSITY PACKAGING.
- Creator
-
Zhang, Chong, Kar, Aravinda, University of Central Florida
- Abstract / Description
-
Laser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length...
Show moreLaser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length in the dielectric is also considered in this model. Therefore, the volumetric heating source criteria are applied in the model and the equations are solved analytically. The microvia drilling speed, temperature distribution in the dielectric and the thickness of the residue along the microvia walls and at the bottom of the microvia are studied for different laser irradiation conditions. An overheated metastable state of material is found to exist inside the workpiece. The overheating parameters are calculated for various laser drilling parameters and are used to predict the onset of thermal damage and to minimize the residue. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. A numerical thermal model is built to study the effect of self-defocusing for laser microvias drilling in multilayer electronic substrates with Nd:YAG and CO2 lasers.. The laser ablation thresholds was calculated with this model for the CO2 and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam in terms of residue and tapering angle. Laser beam shaping technique is used to produce the desired pitchfork beam. Laser beam shaping allows redistribution of laser power and phase across the cross-section of the beam for drilling perfectly cylindrical holes. An optical system, which is comprised of three lenses, is designed to transform a Gaussian beam into a pitchfork beam. The first two lenses are the phase elements through which a Gaussian laser beam is transformed into a super Gaussian beam. The ray tracing technique of geometrical optics is used to design these phase elements. The third lens is the transform element which produces a pitchfork profile at the focal plane due to the diffraction effect. A pinhole scanning power meter is used to measure the laser beam profile at the focal plane to verify the existence of the pitchfork beam. To account for diffraction effect, the above mentioned laser beam shaping system was optimized by iterative method using Adaptive Additive algorithm. Fresnel diffraction is used in the iterative calculation. The optimization was target to reduce the energy contained in the first order diffraction ring and to increase the depth of focus for the system. Two diffractive optical elements were designed. The result of the optimization was found dependent on the relation between the diameter of the designed beam shape and the airy disk diameter. If the diameter of the designed beam is larger, the optimization can generate better result. Drilling experiment is performed with a Q-switched CO2 laser at wavelength of 9.3 μm. Comparison among the drilling results from Gaussian beam, Bessel beam and Pitchfork beam shows that the pitchfork beam can produce microvias with less tapering angle and less residue at the bottom of the via. Laser parameters were evaluated experimentally to study their influences on the via quality. Laser drilling process was optimized based on the evaluation to give high quality of the via and high throughput rate. Nd:YAG laser at wavelengths of 1.06 μm and 532 nm were also used in this research to do microvias drilling. Experimental result is compared with the model. Experimental results show the formation of convex surfaces during laser irradiation. These surfaces eventually rupture and the material is removed explosively due to high internal pressures. Due to the short wavelength, high power, high efficiency and high repetition rate, these lasers exhibit large potentials for microvias drilling.
Show less - Date Issued
- 2008
- Identifier
- CFE0002363, ucf:47799
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002363
- Title
- Holographic optical elements for visible light applications in photo-thermo-refractive glass.
- Creator
-
Kompan, Fedor, Glebov, Leonid, Schulzgen, Axel, Richardson, Kathleen, Rahman, Talat, University of Central Florida
- Abstract / Description
-
This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation...
Show moreThis dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR glass with visible radiation. The mechanism of photoionization in this case is based on an excited state absorption upconversion process in the glass when doped with Tb3+. By contrast, the second approach uses the original Ce3+ doped PTR glass and introduces a new modified technique for hologram formation that allows for holographic recording with visible light. Complex HOEs including holographic lenses and holographic curved mirrors were fabricated in PTR glass with visible light using both techniques. The third part of the dissertation takes a step in a different direction and discusses the development of the methods for fabrication of phase masks in PTR glass. A method for relatively straightforward and inexpensive fabrication of phase masks with the aid of a Digital Micromirror Device is presented. This method enabled to produce phase masks containing complex greyscale phase distributions for generation of vortex (helical) beams. A phase mask can be holographically encoded into a transmission Bragg grating where a holographic phase mask (HPM) is formed. HPM has an advantage over a regular phase mask of being capable of multi-wavelength operation. All optical elements recorded in PTR glass preserve the advantages peculiar to VBGs recorded in PTR glass such as stability to heating and illumination with high-power laser beams.
Show less - Date Issued
- 2019
- Identifier
- CFE0007665, ucf:52480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007665
- Title
- THERMAL MANAGEMENT, BEAM CONTROL,AND PACKAGING DESIGNS FOR HIGH POWER DIODE LASER ARRAYS AND PUMP CAVITY DESIGNS FOR DIODE LASER ARRAY PUMPED ROD SHAPED LASERS.
- Creator
-
Chung, Te-yuan, Bass, Michael, University of Central Florida
- Abstract / Description
-
Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time....
Show moreSeveral novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.
Show less - Date Issued
- 2004
- Identifier
- CFE0000259, ucf:46222
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000259
- Title
- DESIGN, ANALYSIS, AND OPTIMIZATION OF DIFFRACTIVE OPTICAL ELEMENTS UNDER HIGH NUMERICAL APERTURE FOCUSING.
- Creator
-
Jabbour, Toufic, Kuebler, Stephen, University of Central Florida
- Abstract / Description
-
The demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical...
Show moreThe demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical lithography, microscopy and direct laser writing are but a few of the many applications in which a properly designed DOE can significantly improve optical performance of the system. Designing DOEs for use in high-NA applications is complicated by electric field depolarization that occurs with tight focusing. The linear polarization of off-axis rays is tilted upon refraction towards the focal point, generating additional transverse and longitudinal polarization components. These additional field components contribute significantly to the shape of the PSF under tight focusing and cannot be neglected as in scalar diffraction theory. The PSF can be modeled more rigorously using the electromagnetic diffraction integrals derived by Wolf, which account for the full vector character of the field. In this work, optimization algorithms based on vector diffraction theory were developed for designing DOEs that reshape the PSF of a 1.4-NA objective lens. The optimization techniques include simple exhaustive search, iterative optimization (Method of Generalized Projections), and evolutionary computation (Particle Swarm Optimization). DOE designs were obtained that can reshape either the transverse PSF or the irradiance distribution along the optical axis. In one example of transverse beam shaping, all polarization components were simultaneously reshaped so their vector addition generates a focused flat-top square irradiance pattern. Other designs were obtained that can be used to narrow the axial irradiance distribution, giving a focused beam that is superresolved relative to the diffraction limit. In addition to theory, experimental studies were undertaken that include (1) fabricating an axially superresolving DOE, (2) incorporating the DOE into the optical setup, (3) imaging the focused PSF, and (4) measuring aberrations in the objective lens to study how these affect performance of the DOE.
Show less - Date Issued
- 2009
- Identifier
- CFE0002844, ucf:48063
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002844
- Title
- Phonon Modulation by Polarized Lasers for Material Modification.
- Creator
-
Chen, Sen-Yong, Kar, Aravinda, Vaidyanathan, Rajan, Harvey, James, Likamwa, Patrick, University of Central Florida
- Abstract / Description
-
Magnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts,...
Show moreMagnetic resonance imaging (MRI) has become one of the premier non-invasive diagnostic tools, with around 60 million MRI scans applied each year. However, there is a risk of thermal injury due to radiofrequency (RF) induction heating of the tissue and implanted metallic device for the patients with the implanted metallic devices. Especially, MRI of the patients with implanted elongated devices such as pacemakers and deep brain stimulation systems is considered contraindicated. Many efforts, such as determining preferred MRI parameters, modifying magnetic field distribution, designing new structure and exploring new materials, have been made to reduce the induction heating. Improving the MRI-compatibility of implanted metallic devices by modifying the properties of the existing materials would be valuable.To evaluate the temperature rise due to RF induction heating on a metallic implant during MRI procedure, an electromagnetic model and thermal model are studied. The models consider the shape of RF magnetic pulses, interaction of RF pulses with metal plate, thermal conduction inside the metal and the convection at the interface between the metal and the surroundings. Transient temperature variation and effects of heat transfer coefficient, reflectivity and MRI settings on the temperature change are studied.Laser diffusion is applied to some titanium sheets for a preliminary study. An electromagnetic and thermal model is developed to choose the proper diffusant. Pt is the diffusant in this study. An electromagnetic model is also developed based on the principles of inverse problems to calculate the electromagnetic properties of the metals from the measured magnetic transmittance. This model is used to determine the reflectivity, dielectric constant and conductivity of treated and as-received Ti sheets. The treated Ti sheets show higher conductivity than the as-received Ti sheets, resulting higher reflectivity.A beam shaping lens system which is designed based on vector diffraction theory is used in laser diffusion. Designing beam shaping lens based on the vector diffraction theory offers improved irradiance profile and new applications such as polarized beam shaping because the polarization nature of laser beams is considered. Laser Pt diffusion are applied on the titanium and tantalum substrates using different laser beam polarizations. The concentration of Pt and oxygen in those substrates are measured using Energy Dispersive X-Ray Spectroscopy (EDS). The magnetic transmittance and conductivity of those substrates are measured as well. The effects of laser beam polarizations on Pt diffusion and the magnetic transmittance and conductivity of those substrates are studied. Treated Ti sheets show lower magnetic transmittance due to the increased conductivity from diffused Pt atoms. On the other hand, treated Ta sheets show higher magnetic transmittance due to reduced conductivity from oxidation. Linearly polarized light can enhance the Pt diffusion because of the excitation of local vibration mode of atoms.Laser Pt diffusion and thermo-treatment were applied on the Ta and MP35N wires. The Pt concentration in laser platinized Ta and MP35N wires was determined using EDS. The ultimate tensile strength, fatigue lives and lead tip heating in real MRI environment of those wires were measured. The lead tip hating of the platinized Ta wires is 42 % less than the as-received Ta wire. The diffused Pt increases the conductivity of Ta wires, resulting in more reflection of magnetic field. In the case of the platinized MP35N wire, the reduction in lead tip heating was only 1 (&)deg;C due to low concentration of Pt. The weaker ultimate tensile strength and shorter fatigue lives of laser-treated Ta and MP35N wires may attribute to the oxidation and heating treatment.
Show less - Date Issued
- 2012
- Identifier
- CFE0004500, ucf:49269
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004500
- Title
- FREEFORM REFLECTOR DESIGN WITH EXTENDED SOURCES.
- Creator
-
Fournier, Florian, Rolland, Jannick, University of Central Florida
- Abstract / Description
-
Reflector design stemmed from the need to shape the light emitted by candles or lamps. Over 2,000 years ago people realized that a mirror shaped as a parabola can concentrate light, and thus significantly boosts its intensity, to the point where objects can be set afire. Nowadays many applications require an accurate control of light, such as automotive headlights, streetlights, projection displays, and medical illuminators. In all cases light emitted from a light source can be shaped into a...
Show moreReflector design stemmed from the need to shape the light emitted by candles or lamps. Over 2,000 years ago people realized that a mirror shaped as a parabola can concentrate light, and thus significantly boosts its intensity, to the point where objects can be set afire. Nowadays many applications require an accurate control of light, such as automotive headlights, streetlights, projection displays, and medical illuminators. In all cases light emitted from a light source can be shaped into a desired target distribution with a reflective surface. Design methods for systems with rotational and translational symmetry were devised in the 1930s. However, the freeform reflector shapes required to illuminate targets with no such symmetries proved to be much more challenging to design. Even when the source is assumed to be a point, the reflector shape is governed by a set of second-order partial non-linear differential equations that cannot be solved with standard numerical integration techniques. An iterative approach to solve the problem for a discrete target, known as the method of supporting ellipsoids, was recently proposed by Oliker. In this research we report several efficient implementations of the method of supporting ellipsoids, based on the point source approximation, and we propose new reflector design techniques that take into account the extent of the source. More specifically, this work has led to three major achievements. First, a thorough analysis of the method of supporting ellipsoids was performed that resulted in two alternative implementations of the algorithm, which enable a fast generation of freeform reflector shapes within the point source approximation. We tailored the algorithm in order to provide control over the parameters of interest to the designers, such as the reflector scale and geometry. Second, the shape generation algorithm was used to analyze how source flux can be mapped onto the target. We derived the condition under which a given source-target mapping can be achieved with a smooth continuous surface, referred as the integrability condition. We proposed a method to derive mappings that satisfy the integrability condition. We then use these mappings to quickly generate reflector shapes that create continuous target distributions as opposed to reflectors generated with the method of supporting ellipsoids that create discrete sets of points on the target. We also show how mappings that do not satisfy the integrability condition can be achieved by introducing step discontinuities in the reflector surface. Third, we investigated two methods to design reflectors with extended sources. The first method uses a compensation approach where the prescribed target distribution is adjusted iteratively. This method is effective for compact sources and systems with rotational or translational symmetry. The second method tiles the source images created by a reflector designed with the method of supporting ellipsoids and then blends the source images together using scattering in order to obtain a continuous target distribution. This latter method is effective for freeform reflectors and target distributions with no sharp variations. Finally, several case studies illustrate how these methods can be successfully applied to design reflectors for general illumination applications such as street lighting or luminaires. We show that the proposed design methods can ease the design of freeform reflectors and provide efficient, cost-effective solutions that avoid unnecessary energy consumption and light pollution.
Show less - Date Issued
- 2010
- Identifier
- CFE0003311, ucf:48508
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003311