Current Search: catalase (x)
-
-
Title
-
THE EFFECTS OF SITE-DIRECTED MUTAGENESIS ON HEMERYTHRIN-LIKE PROTEIN RV2633C.
-
Creator
-
Rosch, Kelly M, Self, William, University of Central Florida
-
Abstract / Description
-
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project...
Show moreMycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project is to identify specific residues outside of the HHE domain that contribute to the protein's iron-binding ability and/or catalase activity, and to determine whether residues on the C terminus are required for dimerization. Conserved residues D37, E42, and E95 were selected due to their proximity in the amino acid sequence to the HHE domain. Each residue was mutated to alanine using site-directed mutagenesis and the mutations were confirmed using Sanger sequencing. The E95A mutant and the C-terminal truncation mutant were expressed in Escherichia coli using the T7 expression system and purified using affinity chromatography. While wild-type Rv2633c eluted as a soluble protein, the C-terminal truncation mutant was not soluble, indicating that the C terminus may be required for Rv2633c folding. The E95A mutant eluted as a soluble protein, but may have lower iron content than wild-type Rv2633c, indicating that this glutamic acid residue could contribute to iron-binding, despite being outside the HHE domain.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000438, ucf:45794
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000438
-
-
Title
-
TAILORING THE PROPERTIES OF POLYELECTROLYTE COATED CERIUM OXIDE NANOPARTICLES AS A FUNCTION OF MOLECULAR WEIGHT.
-
Creator
-
Saraf, Shashank, Seal, Sudipta, Cho, Hyoung, Zhai, Lei, Heinrich, Helge, Harper, James, University of Central Florida
-
Abstract / Description
-
The application of Cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. This was achieved by coating CNPs with polyacrylic acid (PAA)which increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA...
Show moreThe application of Cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. This was achieved by coating CNPs with polyacrylic acid (PAA)which increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analysed using the change in the Gibbs free energy computed by Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The Gibbs free energy was highest for PAA coated CNPs by 250 kg/mole indicating the most stable coating. The free energy for PAA 100 kg/mole coated CNPs is 85% lower than the PAA250 coated CNPs. This significant difference is caused by the strong adsorption of PAA100 on CNPs. Catalytic activity of PAA-CNPs is accessed by the catalase enzymatic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. Apart from PAA coating the catalase activity is also affected by the structure of the coating layer.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005410, ucf:50410
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005410