Current Search: cryogenic (x)
-
-
Title
-
The Effect of Vibrations on Cryogens Boil Off During Launch, Transfer and Transport.
-
Creator
-
Schlichenmaier, Erin, Chow, Louis, Kauffman, Jeffrey, Raghavan, Seetha, University of Central Florida
-
Abstract / Description
-
Boil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of...
Show moreBoil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of cryogenic fluids is vibrated, it boils off at an increased rate.A series of experiments were performed in which a cryogenic storage Dewar filled with liquid nitrogen was subjected to vibrational input and the rate of boil-off was measured. Based on the results of the testing, it has been determined that the rate of boil-off of a cryogenic fluid increases by a factor of up to five times the resting boil off rate during the application of vibrational energy. The development of advanced cryogenic storage systems capable of reducing vibrational loading of the fluid could significantly decrease the loss of cryogens during procedures such as transporting and storing the fluid or launching a space vehicle.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006389, ucf:51529
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006389
-
-
Title
-
Large Scale Cryogenic Storage With Active Refrigeration.
-
Creator
-
Swanger, Adam, Chow, Louis, Kapat, Jayanta, Notardonato, William, University of Central Florida
-
Abstract / Description
-
Storage and transfer of cryogenic liquefied gases on volume scales from under 10 liters for lab use, up to hundreds of millions of liters for industrial applications is of paramount importance across a vast range of industries. Traditionally, these commodities have been stored at or near the normal boiling point due to relative ease of operation and safety-related considerations; however, this also means that some percentage will always be lost due to environmental heat leaking into the...
Show moreStorage and transfer of cryogenic liquefied gases on volume scales from under 10 liters for lab use, up to hundreds of millions of liters for industrial applications is of paramount importance across a vast range of industries. Traditionally, these commodities have been stored at or near the normal boiling point due to relative ease of operation and safety-related considerations; however, this also means that some percentage will always be lost due to environmental heat leaking into the vessel and causing boiloff. These losses become more concerning as scales increase, and are of particular importance for high-cost commodities such helium and hydrogen. Additionally, the normal boiling point has typically marked the highest liquid density achievable, which became a strong driver of end-use system designs such as space launch vehicles. Recent development and testing of an Integrated Refrigeration and Storage (IRAS) system for liquid hydrogen has proven that next generation cryogenic storage operations such as zero boiloff and densification are feasible on a large scale. This IRAS system married an 850 Watt at 20 Kelvin reverse-Brayton cycle commercial cryogenic refrigerator with a 125,000 liter LH2 storage tank via an internal tubular heat exchanger; thereby allowing heat to be removed directly from the hydrogen, and by extension, providing a means to control the bulk thermodynamic state. Tests of zero boiloff, in-situ liquefaction, and densification down to the triple point were performed, and data including fluid temperature profiles and tank pressure were gathered. Details regarding the design, setup, and testing of the IRAS system are discussed herein, and the data are used to anchor various physics models created to predict the behavior of the system during both transient and steady state operations. Hopefully these efforts will provide a useful basis for the design and implementation of future large scale IRAS systems across numerous industries.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007588, ucf:52530
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007588
-
-
Title
-
SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR.
-
Creator
-
Zheng, Liping, Sundaram, Kalpathy, University of Central Florida
-
Abstract / Description
-
This dissertation is concerned with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed the motor to have an efficiency reaching above 92%. This achieved efficiency indicated a significant improvement compared to commercial...
Show moreThis dissertation is concerned with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed the motor to have an efficiency reaching above 92%. This achieved efficiency indicated a significant improvement compared to commercial motors with similar ratings. This dissertation first discusses the basic concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided. Particular design strategies have to be adopted for super-high speed applications since motor losses assume a key role in the motor drive performance limit. The considerations of the PMSM structure for cryogenic applications are also discussed. It is shown that slotless structure with multi-strand Litz-wire is favorable for super-high speeds and cryogenic applications. The design, simulation, and test of a single-sided axial flux pancake PMSM is presented. The advantages and disadvantages of this kind of structure are discussed, and further improvements are suggested and some have been verified by experiments. The methodologies of designing super high-speed motors are provided in details. Based on these methodologies, a super high-speed radial-flux PMSM was designed and fabricated. The designed PMSM meets our expectation and the tested results agree with the design specifications. 2-D and 3-D modeling of the complicated PMSM structure for the electromagnetic numerical simulations of motor performance and parameters such as phase inductors, core losses, rotor eddy current loss, torque, and induced electromotive force (back-EMF) are also presented in detail in this dissertation. Some mechanical issues such as thermal analysis, bearing pre-load, rotor stress analysis, and rotor dynamics analysis are also discussed. Different control schemes are presented and suitable control schemes for super high- speed PMSM are also discussed in detail.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000762, ucf:46562
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000762
-
-
Title
-
CRYOGENIC SHAPE MEMORY ALLOY ACTUATORS FOR SPACEPORT TECHNOLOGIES: MATERIALS CHARACTERIZATION AND PROTOTYPE TESTING.
-
Creator
-
Lemanski, Jennifer, Vaidyanathan, Rajan, University of Central Florida
-
Abstract / Description
-
Shape memory alloys (SMAs) possess the unique ability to change their shape by undergoing a solid-state phase transformation at a particular temperature. The shape change is associated with a large strain recovery as the material returns to its "remembered" shape. Their ability to act as both sensor and actuator has made them an attractive subject of study for numerous applications. SMAs have many characteristics which are advantageous in space-related applications, including generation of...
Show moreShape memory alloys (SMAs) possess the unique ability to change their shape by undergoing a solid-state phase transformation at a particular temperature. The shape change is associated with a large strain recovery as the material returns to its "remembered" shape. Their ability to act as both sensor and actuator has made them an attractive subject of study for numerous applications. SMAs have many characteristics which are advantageous in space-related applications, including generation of large forces associated with the strain recovery, smooth and controlled movements, large movement to weight ratio, high reliability, and spark-free operation. The objective of this work is the further development and testing of a cryogenic thermal conduction switch as part of NASA funded projects. The switch was developed to provide a variable conductive pathway between liquid methane and liquid oxygen dewars in order to passively regulate the methane temperature. Development of the switch concept has been continued in this work by utilizing Ni-Ti-Fe as the active SMA element. Ni-Ti-Fe exhibits the shape memory effect at cryogenic temperatures, which makes it well suited for low temperature applications. This alloy is also distinguished by an intermediate phase change known as the rhombohedral or R-phase, which is characterized by a small hysteresis (typically 1-2 deg C) and offers the advantage of precise control over a set temperature range. For the Ni-Ti-Fe alloy used, its thermomechanical processing, subsequent characterization using dilatometry and differential scanning calorimetry and implementation in the conduction switch configuration are addressed. This work was funded by grants from NASA KSC (NAG10-323) and NASA GRC (NAG3-2751).
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000501, ucf:46448
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000501
-
-
Title
-
PROCESS DEVELOPMENT FOR THE FABRICATION OF MESOSCALE ELECTROSTATIC VALVE ASSEMBLY.
-
Creator
-
Dhru, Shailini, Sundaram, Kalpathy, University of Central Florida
-
Abstract / Description
-
This study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 μm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 μm thick resist pattern on silicon wafer. This photo layer...
Show moreThis study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 μm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 μm thick resist pattern on silicon wafer. This photo layer acts as a mask for deep reactive ion etching. Wet chemical etching process is developed to etch kapton polyamide film. This etched film is used as a stand off, gap between two electrodes of the electrostatic valve assembly. The criterion is to develop the processed using standard industry tools. Pre post etch effects, such as, surface roughness, etching pattern, critical dimensions on the samples are measured with Veeco profilometer.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001828, ucf:47347
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001828
-
-
Title
-
LOW TEMPERATURE NITIFE SHAPE MEMORY ALLOYS: ACTUATOR ENGINEERING AND INVESTIGATION OF DEFORMATION MECHANISMS USING IN SITU NEUTRON DIFFRACTION AT LOS ALAMOS NATIONAL LABORATORY.
-
Creator
-
Krishnan, Vinu, Vaidyanathan, Raj, University of Central Florida
-
Abstract / Description
-
Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable...
Show moreShape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the Rietveld technique. The mechanical characterization of NiTiFe alloys using the cryogenic capability at SMARTS provided considerable insight into the mechanisms of phase transformation and twinning at cryogenic temperatures. Both mechanisms contribute to shape memory and pseudoelasticity phenomena. Three phases (R, B19' and B33 phases) were found to coexist at 92 K in the unloaded condition (nominal holding stress of 8 MPa). For the first time the elastic modulus of R-phase was reported from neutron diffraction experiments. Furthermore, for the first time a base-centered orthorhombic (B33) martensitic phase was identified experimentally in a NiTi-based shape memory alloy. The orthorhombic B33 phase has been theoretically predicted in NiTi from density function theory (DFT) calculations but hitherto has never been observed experimentally. The orthorhombic B33 phase was observed while observing shifting of a peak (identified to be B33) between the R and B19' peaks in the diffraction spectra collected during loading. Given the existing ambiguity in the published literature as to whether the trigonal R-phase belongs to the P3 or P space groups, Rietveld analyses were separately carried out incorporating the symmetries associated with both space groups and the impact of this choice evaluated. The constrained recovery of the B19' phase to the R-phase recorded approximately 4% strain recovery between 150 K and 170 K, with half of that recovery occurring between 160 K and 162 K. Additionally, the aforementioned research methodology developed for Ni46.8Ti50Fe3.2 shape memory alloys was applied to experiments performed on a new high temperature Ni29.5Ti50.5Pd20 shape memory alloys. The engineering aspect focused on the development of (i) a NiTiFe based thermal conduction switch that minimized the heat gradient across the shape memory actuator element, (ii) a NiTiFe based thermal conduction switch that incorporated the actuator element in the form of helical springs, and (iii) a NiTi based release mechanism. Patents are being filed for all the three shape memory actuators developed as a part of this work. This work was supported by grants from SRI, NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF. Additionally, this work benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001934, ucf:47437
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001934
-
-
Title
-
Cryogenic performance projections for ultra-small oxide-free vertical-cavity surface-emitting lasers.
-
Creator
-
Bayat, Mina, Deppe, Dennis, Li, Guifang, Schoenfeld, Winston, Lyakh, Arkadiy, University of Central Florida
-
Abstract / Description
-
Small-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free...
Show moreSmall-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free VCSEL sizes of 2 to 6 (&)#181;m, that have been shown to operate efficiently at room temperature. Temperature dependent operation for optimally-designed VCSELs are studied by calculating the response of the laser at 77 K and 4 K to estimate their bias conditions needed to reach modulation speed for cryogenic optical links. The temperature influence is to decrease threshold for reducing temperature, and to increase differential gain for reducing temperature. The two effects predict very low bias currents for small cavity VCSELs to reach needed data speed for cryogenic optical data links. Projections are made for different cavity structures (half-wave cavity and full-wave cavity) shown that half-wave cavity structure has better performance. Changing the number of top-mirror pairs has also been studied to determine how cavity design impacts speed and bit energy. Our design and performance predictions paves the way for realizing highly efficient, ultra-small VCSEL arrays with applications in optical interconnects.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007782, ucf:52330
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007782
-
-
Title
-
Surface Acoustic Wave (SAW) Cryogenic Liquid and Hydrogen Gas Sensors.
-
Creator
-
Fisher, Brian, Malocha, Donald, Gong, Xun, Likamwa, Patrick, Richie, Samuel, Youngquist, Robert, University of Central Florida
-
Abstract / Description
-
This research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a...
Show moreThis research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a passive (or low-power), wireless, gas detection system, which continuously monitors multiple nodes and reports temperature and H2 gas presence. Passive, wireless, cryogenic liquid level and hydrogen (H2) gas sensors were developed on a platform technology called Orthogonal Frequency Coded (OFC) surface acoustic wave (SAW) radio frequency identification (RFID) tag sensors. The OFC-SAW was shown to be mechanically resistant to failure due to thermal shock from repeated cycles between room to liquid nitrogen temperature. This suggests that these tags are ideal for integration into cryogenic Dewar environments for the purposes of cryogenic liquid level detection. Three OFC-SAW H2 gas sensors were simultaneously wirelessly interrogated while being exposed to various flow rates of H2 gas. Rapid H2 detection was achieved for flow rates as low as 1ccm of a 2% H2, 98% N2 mixture. A novel method and theory to extract the electrical and mechanical properties of a semiconducting and high conductivity thin-film using SAW amplitude and velocity dispersion measurements were also developed. The SAW device was shown to be a useful tool in analysis and characterization of ultrathin and thin films and physical phenomena such as gas adsorption and desorption mechanisms.?
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004536, ucf:49258
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004536
-
-
Title
-
COMMISSIONING OF AN ARC-MELTING / VACUUM QUENCH FURNACE FACILITY FOR FABRICATION OF NI-TI-FE SHAPE MEMORY ALLOYS, AND THEIR CHARACTERIZATION.
-
Creator
-
Singh, Jagat, Vaidyanathan, Raj, University of Central Florida
-
Abstract / Description
-
Shape memory alloys when deformed can produce strains as high as 8%. Heating results in a phase transformation and associated recovery of all the accumulated strain, a phenomenon known as shape memory. This strain recovery can occur against large forces, resulting in their use as actuators. The goal of this project is to lower the operating temperature range of shape memory alloys in order for them to be used in cryogenic switches, seals, valves, fluid-line repair and self-healing gaskets for...
Show moreShape memory alloys when deformed can produce strains as high as 8%. Heating results in a phase transformation and associated recovery of all the accumulated strain, a phenomenon known as shape memory. This strain recovery can occur against large forces, resulting in their use as actuators. The goal of this project is to lower the operating temperature range of shape memory alloys in order for them to be used in cryogenic switches, seals, valves, fluid-line repair and self-healing gaskets for space related technologies. The Ni-Ti-Fe alloy system, previously used in Grumman F-14 aircrafts and activated at 120 K, is further developed through arc-melting a range of compositions and subsequent thermo-mechanical processing. A controlled atmosphere arc-melting facility and vertical vacuum quench furnace facility was commissioned to fabricate these alloys. The facility can create a vacuum of 10-7 Torr and heat treat samples up to 977 °C. High purity powders of Ni, Ti and Fe in varying ratios were mixed and arc-melted into small buttons weighing 0.010 kg to 0.025 kg. The alloys were subjected to solutionizing and aging treatments. A combination of rolling, electro-discharge machining and low-speed cutting techniques were used to produce strips. Successful rolling experiments highlighted the workability of these alloys. The shape memory effect was successfully demonstrated at liquid nitrogen temperatures through a constrained recovery experiment that generated stresses of over 40 MPa. Differential scanning calorimetry (DSC) and a dilatometry setup was used to characterize the fabricated materials and determine relationships between composition, thermo-mechanical processing parameters and transformation temperatures.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000308, ucf:46320
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000308
-
-
Title
-
DESIGN, FABRICATION AND TESTING OF A SHAPE MEMORY ALLOY BASED CRYOGENIC THERMAL CONDUCTION SWITCH.
-
Creator
-
Krishnan, Vinu Bala, Vaidyanathan, Raj, University of Central Florida
-
Abstract / Description
-
Shape memory alloys (SMAs) can recover large strains (e.g., up to 8%) by undergoing a temperature-induced phase transformation. This strain recovery can occur against large forces, resulting in their use as actuators. The SMA elements in such actuators integrate both sensory and actuation functions. This is possible because SMAs can inherently sense a change in temperature and actuate by undergoing a shape change, associated with the temperature-induced phase transformation. The objective of...
Show moreShape memory alloys (SMAs) can recover large strains (e.g., up to 8%) by undergoing a temperature-induced phase transformation. This strain recovery can occur against large forces, resulting in their use as actuators. The SMA elements in such actuators integrate both sensory and actuation functions. This is possible because SMAs can inherently sense a change in temperature and actuate by undergoing a shape change, associated with the temperature-induced phase transformation. The objective of this work is to develop an SMA based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulk head arrangement for NASA. The design of the thermal conduction switch is based on a biased, two-way SMA actuator and utilizes a commercially available NiTi alloy as the SMA element to demonstrate the feasibility of this concept. This work describes the design from concept to implementation, addressing methodologies and issues encountered, including: a finite element based thermal analysis, various thermo-mechanical processes carried out on the NiTi SMA elements, and fabrication and testing of a prototype switch. Furthermore, recommendations for improvements and extension to NASA's requirements are presented. Such a switch has potential application in variable thermal sinks to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. The SMA thermal conduction switch offers the following advantages over the currently used gas gap and liquid gap thermal switches in the cryogenic range: (i) integrates both sensor and actuator elements thereby reducing the overall complexity, (ii) exhibits superior thermal isolation in the open state, and (iii) possesses high heat transfer ratios between the open and closed states. This work was supported by a grant from NASA Kennedy Space Center (NAG10-323) with William U. Notardonato as Technical Officer.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000038, ucf:46136
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000038