Current Search: estuaries (x)
-
-
Title
-
Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing.
-
Creator
-
Mostafiz, Chandan, Chang, Ni-bin, Wanielista, Martin, Kibler, Kelly, University of Central Florida
-
Abstract / Description
-
Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals. These estuaries also withstand the worst of some natural disasters, especially hurricanes. The estuaries as well as the harbored ecosystems undergo significant changes in terms of water quality, vegetation cover...
Show moreEstuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals. These estuaries also withstand the worst of some natural disasters, especially hurricanes. The estuaries as well as the harbored ecosystems undergo significant changes in terms of water quality, vegetation cover etc. and these components are interrelated. When hurricane makes landfall it is necessary to assess the damages as quickly as possible as restoration and recovery processes are time-sensitive. However, assessment of physical damages through inspection and survey and assessment of chemical and nutrient component changes by laboratory testing are time-consuming processes. This is where remote sensing comes into play. With the help of remote sensing images and regression analysis, it is possible to reconstruct water quality maps of the estuary affected. The damage sustained by the vegetation cover of the adjacent coastal watershed can be assessed using Normalized Difference Vegetation Index (NDVI) The water quality maps together with NDVI maps help observe a dynamic sea-land interaction due to hurricane landfall. The observation of hurricane impacts on a coastal watershed can be further enhanced by use of tasseled cap transformation (TCT). TCT plots provide information on a host of land cover conditions with respect to soil moisture, canopy and vegetation cover. The before and after TCT plots help assess the damage sustained in a hurricane event and also see the progress of recovery. Finally, the use of synthetic images obtained by use of data fusion will help close the gap of low temporal resolution of Landsat satellite and this will create a more robust monitoring system.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006900, ucf:51729
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006900
-
-
Title
-
ANALYSIS, MODELING, AND SIMULATION OF THE TIDES IN THE LOXAHATCHEE RIVER ESTUARY (SOUTHEASTERN FLORIDA).
-
Creator
-
Bacopoulos, Peter, Hagen, Scott, University of Central Florida
-
Abstract / Description
-
Recent cooperative efforts between the University of Central Florida, the Florida Department of Environmental Protection, and the South Florida Water Management District explore the development of a two-dimensional, depth-integrated tidal model for the Loxahatchee River estuary (Southeastern Florida). Employing a large-domain approach (i.e., the Western North Atlantic Tidal model domain), two-dimensional tidal flows within the Loxahatchee River estuary are reproduced to provide: 1)...
Show moreRecent cooperative efforts between the University of Central Florida, the Florida Department of Environmental Protection, and the South Florida Water Management District explore the development of a two-dimensional, depth-integrated tidal model for the Loxahatchee River estuary (Southeastern Florida). Employing a large-domain approach (i.e., the Western North Atlantic Tidal model domain), two-dimensional tidal flows within the Loxahatchee River estuary are reproduced to provide: 1) recommendations for the domain extent of an integrated, surface/groundwater, three-dimensional model; 2) nearshore, harmonically decomposed, tidal elevation boundary conditions. Tidal simulations are performed using a two-dimensional, depth-integrated, finite element-based code for coastal and ocean circulation, ADCIRC-2DDI. Multiple variations of an unstructured, finite element mesh are applied to encompass the Loxahatchee River estuary and different spatial extents of the Atlantic Intracoastal Waterway (AIW). Phase and amplitude errors between model output and historical data are quantified at five locations within the Loxahatchee River estuary to emphasize the importance of including the AIW in the computational domain. In addition, velocity residuals are computed globally to reveal significantly different net circulation patterns within the Loxahatchee River estuary, as depending on the spatial coverage of the AIW.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000925, ucf:46755
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000925
-
-
Title
-
ESTUARINE INFLUENCE ON TIDALLY DRIVEN CIRCULATION IN THE SOUTH ATLANTIC BIGHT.
-
Creator
-
Bacopoulos, Peter, Hagen, Scott, University of Central Florida
-
Abstract / Description
-
A high-resolution, finite element-based, shallow water equation model is developed to simulate the tides in the South Atlantic Bight. The model is constructed to include all of the estuarine features along the southeastern United States seaboard: coastal inlets, rivers and tidal creeks, sounds and lagoons, intertidal zones including salt marshes and mangrove swamps, and the Atlantic Intracoastal Waterway. The estuaries are represented in the finite element mesh using triangular elements with...
Show moreA high-resolution, finite element-based, shallow water equation model is developed to simulate the tides in the South Atlantic Bight. The model is constructed to include all of the estuarine features along the southeastern United States seaboard: coastal inlets, rivers and tidal creeks, sounds and lagoons, intertidal zones including salt marshes and mangrove swamps, and the Atlantic Intracoastal Waterway. The estuaries are represented in the finite element mesh using triangular elements with side lengths on the order of tens of meters. Also incorporated into the model is a spatially distributed bottom friction parameterization, based on the various landcover and benthic characteristics in the domain. The motivation to use this comprehensive representation of the system was inspired by a desire to capably account for the full estuarine tidal physics. In this approach, no calibration is performed and the model is used as a tool to assess the physical processes it describes. Upon its development, the model is first validated by accurately simulating tidal hydrodynamics in the South Atlantic Bight including the described estuaries. Variants of the model are then constructed by selectively removing estuarine features from the domain. All model representations are subsequently applied in nearly identical simulations: the only differing factor between the simulations being the inland extent of the estuaries described. The solutions are compared with respect to including versus excluding the estuarine features of the domain. Where water surface elevations are shown to be unaffected by the estuarine features of the South Atlantic Bight, tidal velocities exhibit far more sensitivity. This effect is pronounced locally, with regional effects extending offshore. Further analysis is performed on cross-sectional flows recomposed locally and on tidal energetics diagnosed throughout the domain. It is discovered that the high frictional environment of the vast estuarine surface area plays a role in local and regional tidal circulation in the South Atlantic Bight.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002891, ucf:48028
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002891
-
-
Title
-
Identifying inundation-driven effects among intertidal Crassostrea virginica in a commercially important Gulf of Mexico estuary.
-
Creator
-
Solomon, Joshua, Walters, Linda, Weishampel, John, Quintana-Ascencio, Pedro, Hagen, Scott, Wang, Dingbao, University of Central Florida
-
Abstract / Description
-
Sea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial...
Show moreSea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial harvesting to spread from subtidal to intertidal reefs. We investigated the potential responses of intertidal C. virginica to sea level rise, and the response of larval settlement to sedimentation which is likely to increase with higher water levels and storm frequency. Inundation was used as a proxy for sea level rise. We hypothesized four possible outcomes for intertidal oyster reefs as a result of changes in inundation due to sea level rise: (a) intertidal reefs become subtidal and remain in place, (b) intertidal reefs will be lost, (c) intertidal reefs migrate shoreward upslope and remain intertidal, and (d) intertidal reefs will grow in elevation and remain intertidal. To test the plausibility of these four outcomes, oyster ladders were placed at two sites within Apalachicola Bay, Florida, USA. Ladders supported oyster recruitment mats at five heights within the range of intertidal elevations. The bottom-most mat was placed near mean low tide, and the top mat near mean high tide to investigate the effect of tidal inundation time on C. virginica. Sediment traps were attached to ladders with openings at equal elevation to the oyster mats. Ladders were deployed for one year starting in June 2012, and again in June 2013, during peak oyster recruitment season. Monthly for six months during year one, sediment was collected from traps, dried to constant weight and weighed to obtain a monthly average for total sediment at each elevation. At the end of one year, oyster mats were collected from the field and examined for the following responses: live oyster density, mean oyster shell length of live oysters, mean oyster shell angle of growth relative to the benthos, and mean number of sessile competitors. We used AICc to identify the most plausible models using elevation, site, and year as independent variables.Oyster density peaked at intermediate inundation at both sites (maximum 1740 oysters per m2), it decreased slightly at the mean low tide, and sharply at the mean high tide. This response varied between years and sites. Mean oyster shell length peaked near mean low tide (6.7 cm), and decreased with increasing elevation. It varied between years and sites. Oyster shell angle of growth relative to the benthos showed a quadratic response for elevation; site but not year affected this response. Sessile competitor density also showed a quadratic response for elevation and varied between sites and years. Barnacles were the primary spatial competitor reaching densities of up to 28,328 barnacles per m2. Total monthly sedimentation peaked at the lowest elevations, and varied by site, with an order of magnitude difference between sites. Sediment increased with decreasing elevation.Outcomes a, c, and d were found to be viable results of sea level rise, ruling out complete loss of intertidal reefs. Outcome (a) would be associated with decrease in oyster density and increase in oyster length. Outcome (c) would require the laying of oyster cultch upslope and shoreward of current intertidal reefs, as well as the removal of any hard armoring or development. Outcome (d) remained possible, but is the least likely requiring a balance between sedimentation, oyster angle of growth, and recruitment. This should be further investigated. A laboratory experiment was designed to test relative impact of varying sediment grain sizes on settlement of C. virginica larvae. Previous studies showed that suspended solids resulted in decreased larval settlement when using mixed sediment grain sizes. Predicted storm levels and hurricane levels of total suspended solids were used in flow tanks. Sediment from the field experiment was sieved into seven size classes, the most common five of which were used in the experiment since they represented 98.8% of total mass. Flow tanks were designed and built that held 12 aged oyster shells, instant ocean saltwater, and sediment. Oyster larvae were added to the flow tanks and allowed one hour to settle on shells. Each run utilized one of the five size classes of sediment at either a high or low concentration. Following the one-hour settlement period, oyster shells were removed from the flow tank and settled larvae were counted under a dissecting microscope. Settlement was standardized by settlement area using Image J. AICc model selection was performed and the selected model included only grain size, but not concentration. A Tukey's post hoc test differentiated (<)63 ?m from 500 (-) 2000 ?m, with the (<) 63 (&)#181;m grain size having a negative effect on oyster larval settlement. This indicates that the smaller grain sizes of suspended solids are more detrimental to oyster larval settlement than larger grain sizes. The oyster ladder experiment will help resource managers predict and plan for oyster reef migration by cultch laying, and or associated changes in oyster density and shell length if shoreward reef growth is not allowed to occur. The laboratory experiment will help to predict the impacts of future storms on oyster larval recruitment. Together this information can help managers conserve as much remaining oyster habitat as possible by predicting future impacts of climate change on oysters.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005717, ucf:50132
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005717
-
-
Title
-
WEB-BASED TIDAL TOOLBOX OF ASTRONOMIC TIDAL DATA FOR THE ATLANTIC INTRACOASTAL WATERWAY, ESTURARIES AND CONTINENTAL SHELF OF THE SOUTH ATLANTIC BIGHT.
-
Creator
-
Ruiz, Alfredo, Hagen, Scott, University of Central Florida
-
Abstract / Description
-
A high-resolution astronomic tidal model has been developed that includes detailed inshore regions of the Atlantic Intracoastal Waterway and associated estuaries along the South Atlantic Bight. The unique nature of the model's development ensures that the tidal hydrodynamic interaction between the shelf and estuaries is fully described. Harmonic analysis of the model output results in a database of tidal information that extends from a semi-circular arc (radius ~750 km) enclosing the South...
Show moreA high-resolution astronomic tidal model has been developed that includes detailed inshore regions of the Atlantic Intracoastal Waterway and associated estuaries along the South Atlantic Bight. The unique nature of the model's development ensures that the tidal hydrodynamic interaction between the shelf and estuaries is fully described. Harmonic analysis of the model output results in a database of tidal information that extends from a semi-circular arc (radius ~750 km) enclosing the South Atlantic Bight from the North Carolina coast to the Florida Keys, onto the continental shelf and into the full estuarine system. The need for tidal boundary conditions (elevation and velocity) for driving inland waterway models has motivated the development of a software application to extract results from the tidal database which is the basis of this thesis. In this tidal toolbox, the astronomic tidal constituents can be resynthesized for any open water point in the domain over any interval of time in the past, present, or future. The application extracts model results interpolated to a user's exact geographical points of interest, desired time interval, and tidal constituents. Comparison plots of the model results versus historical data are published on the website at 89 tidal gauging stations. All of the aforementioned features work within a zoom-able geospatial interface for enhanced user interaction. In order to make tidal elevation and velocity data available, a web service serves the data to users over the internet. The tidal database of 497,847 nodes and 927,165 elements has been preprocessed and indexed to enable timely access from a typical modern web server. The preprocessing and web services required are detailed in this thesis, as well as the reproducibility of the Tidal Toolbox for new domains.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003579, ucf:48910
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003579
-
-
Title
-
A THREE-DIMENSIONAL BAY/ESTUARY MODEL TO SIMULATE WATER QUALITY TRANSPORT.
-
Creator
-
Yu, Jing, Yeh, Gour-Tsyh, University of Central Florida
-
Abstract / Description
-
This thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and...
Show moreThis thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and erroneous formulation and parameterization of these reactions, and (2) fast reactions and slow reactions are decoupled, which enables robust numerical integrations. The system of species transport equations is transformed to reaction-extent transport equations, which is then approximated with two subsets: algebraic equations and kinetic-variables transport equations. As a result, the model alleviates the needs of using simple partitions for fast reactions. With the diagonalization strategy, it makes the inclusion of arbitrary number of fast and kinetic reactions relatively easy, and, more importantly, it enables the formulation and parameterization of kinetic reactions one by one. To demonstrate the general paradigm, QAUL2E was recasted in the mode of a reaction network. The model then was applied to the Loxahatchee estuary to study its response to a hypothetical biogeochemical loading from its surrounding drainage. Preliminary results indicated that the model can simulate four interacting biogeochemical processes: algae kinetics, nitrogen cycle, phosphorus cycle, and dissolved oxygen balance.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001372, ucf:46991
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001372