Current Search: film cooling (x)
View All Items
Pages
- Title
- Coupled Usage of Discrete Hole and Transpired Film For Better Cooling Performance.
- Creator
-
Torrance, Michael, Kapat, Jayanta, Vasu Sumathi, Subith, Xu, Chengying, University of Central Florida
- Abstract / Description
-
Electricity has become so ingrained in everyday life that the current generation has no knowledge of life without it. The majority of power generation in the United States is the result of turbines of some form. With such widespread utilization of these complex rotating machines, any increase in efficiency translates into improvements in the current cost of energy. These improvements manifest themselves as reductions in greenhouse emissions or possible savings to the consumer. The most...
Show moreElectricity has become so ingrained in everyday life that the current generation has no knowledge of life without it. The majority of power generation in the United States is the result of turbines of some form. With such widespread utilization of these complex rotating machines, any increase in efficiency translates into improvements in the current cost of energy. These improvements manifest themselves as reductions in greenhouse emissions or possible savings to the consumer. The most important temperature regarding turbine performance is the temperature of the hot gas entering the turbine, denoted turbine inlet temperature. Increasing the turbine inlet temperature allows for increases in power production as well as increases in efficiency. The challenge with increasing this temperature, currently the hottest temperature seen by the turbine, is that it currently already exceeds the melting point of the metals that the turbine is manufactured from. Active cooling of stationary and rotating components in the turbine is required. Cooling flows are taken from bleed flows from various stages of the compressor as well as flow from the combustor shell. This cooling flow is considered wasted air as far as performance is concerned and can account for as much as 20% of the mass flow in the hot gas path. Lowering the amount of air used for cooling allows for more to be used for performance gain.Various technologies exist to allow for greater turbine inlet temperatures such as various internal channel features inside of turbine blades, film holes on the surface to cool the outside of the airfoil as well as thermal barrier coatings that insulate the airfoils from the hot mainstream flow. The current work is a study of the potential performance impact of coupling two effusion technologies, transpiration and discrete hole film cooling. Film cooling and transpiring flows are individually validated against literature before the two technologies are coupled. The coupled geometries feature 13 film holes of 7.5mm diameter and a transpiring strip 5mm long in the streamwise direction. The first coupled geometry features the porous section upstream of the film holes and the second features it downstream. Both geometries use the same crushed aluminum porous insert of nominal porosity of 50%. Temperature sensitive paint along with an 'adiabatic' Rohacell surface (thermal conductivity of 0.029W/m-K) are used to measure adiabatic film cooling effectiveness using a scientific grade high resolution CCD camera. The result is local effectiveness data up to 50 film hole diameters downstream of injection location. Data is laterally averaged and compared with the baseline cases. Local effectiveness contours are used to draw conclusions regarding the interactions between transpiration and discrete hole film cooling. It is found that a linear superposition method is only valid far downstream from the injection location. Both coupled geometries perform better than transpiration or the discrete holes far downstream of the injection location. The coupled geometry featuring the transpiring section downstream of the film holes matches the transpiration effectiveness just downstream of injection and surpasses both transpiration and film cooling further downstream.
Show less - Date Issued
- 2012
- Identifier
- CFE0004799, ucf:49721
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004799
- Title
- INVESTIGATION ON INTERACTIONS OF UNSTEADY WAKES AND FILM COOLING ON AN ANNULAR ENDWALL.
- Creator
-
Golsen, Matthew, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
In recent decades, greater interest in the effect of rotational wakes on gas turbine film cooling applications has produced increasing numbers of studies on these unsteady phenomena. Wakes are primarily shed from upstream components such as transition duct walls, stator vanes, and rotors. Studies have shown that in areas of unsteady flow, the best performing parameters in conventional steady investigations may not be the best for unsteady applications. One common method of modeling the...
Show moreIn recent decades, greater interest in the effect of rotational wakes on gas turbine film cooling applications has produced increasing numbers of studies on these unsteady phenomena. Wakes are primarily shed from upstream components such as transition duct walls, stator vanes, and rotors. Studies have shown that in areas of unsteady flow, the best performing parameters in conventional steady investigations may not be the best for unsteady applications. One common method of modeling the unsteady wake interaction in subsonic flows is the use of spoke wheel type wake generators using cylindrical rods to produce the velocity detriment and local increase in turbulence intensity. Though the impact of wakes have been studied for decades on airfoil losses and boundary layer transition, only recently has the film cooling and wake interaction been investigated. The existing work is primarily on leading edge models and airfoil cascades. The primary parameter characterizing the unsteady wakes is the dimensionless or reduced frequency known as the Strouhal number. The film cooling jet itself has dominant frequencies resulting from the shear and the jet trailing wake shedding, depending on the injectant flow rate. There exist great deficiencies in the fundamental understanding of the interaction of these two frequencies. Heat transfer considerations are also relatively recent being studied only since the early 1990's. Heat transfer coefficients and film cooling effectiveness have been reported for leading edge and linear airfoil cascades. In the case of the linear cascade, no data can be taken near the endwall region due to the varying tangential velocity of wake generating rod. The current work expands on this initiative incorporating a sector annular duct as the test setting for the rotating wakes focusing on this endwall region. Studies in to the effect of the rods in this alternate orientation include film cooling effectiveness using temperature sensitive paint, impact of wake rod to film cooling hole diameter ratio, and time accurate numerical predictions and comparisons with experimental work. Data are shown for a range of momentum flux ratios and Strouhal numbers. The result of this work sets the stage for the complete understanding of the unsteady wake and inclined jet interaction.
Show less - Date Issued
- 2011
- Identifier
- CFH0004094, ucf:44796
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004094
- Title
- EFFECT OF PRESSURE GRADIENT AND WAKE ON ENDWALL FILM COOLING EFFECTIVENESS.
- Creator
-
Rodriguez, Sylvette, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Endwall film cooling is a necessity in modern gas turbines for safe and reliable operation. Performance of endwall film cooling is strongly influenced by the hot gas flow field, among other factors. For example, aerodynamic design determines secondary flow vortices such as passage vortices and corner vortices in the endwall region. Moreover blockage presented by the leading edge of the airfoil subjects the incoming flow to a stagnating pressure gradient leading to roll-up of the approaching...
Show moreEndwall film cooling is a necessity in modern gas turbines for safe and reliable operation. Performance of endwall film cooling is strongly influenced by the hot gas flow field, among other factors. For example, aerodynamic design determines secondary flow vortices such as passage vortices and corner vortices in the endwall region. Moreover blockage presented by the leading edge of the airfoil subjects the incoming flow to a stagnating pressure gradient leading to roll-up of the approaching boundary layer and horseshoe vortices. In addition, for a number of heavy frame power generation gas turbines that use cannular combustors, the hot and turbulent gases exiting from the combustor are delivered to the first stage vane through transition ducts. Wakes induced by walls separating adjacent transition ducts located upstream of first row vanes also influence the entering main gas flow field. Furthermore, as hot gas enters vane passages, it accelerates around the vane airfoils. This flow acceleration causes significant streamline curvature and impacts lateral spreading endwall coolant films. Thus endwall flow field, especially those in utility gas turbines with cannular combustors, is quite complicated in the presence of vortices, wakes and strong favorable pressure gradient with resulting flow acceleration. These flow features can seriously impact film cooling performance and make difficult the prediction of film cooling in endwall. This study investigates endwall film cooling under the influence of pressure gradient effects due to stagnation region of an axisymmetric airfoil and in mainstream favorable pressure gradient. It also investigates the impact of wake on endwall film cooling near the stagnation region of an airfoil. The investigation consists of experimental testing and numerical simulation. Endwall film cooling effectiveness is investigated near the stagnation region on an airfoil by placing an axisymmetric airfoil downstream of a single row of inclined cylindrical holes. The holes are inclined at 35° with a length-to-diameter ratio of 7.5 and pitch-to-diameter ratio of 3. The ratio of leading edge radius to hole diameter and the ratio of maximum airfoil thickness to hole diameter are 6 and 20 respectively. The distance of the leading edge of the airfoil is varied along the streamwise direction to simulate the different film cooling rows preceding the leading edge of the airfoil. Wake effects are induced by placing a rectangular plate upstream of the injection point where the ratio of plate thickness to hole diameter is 6.4, and its distance is also varied to investigate the impact of strong and mild wake on endwall film cooling effectiveness. Blowing ratio ranged from 0.5 to 1.5. Film cooling effectiveness is also investigated under the presence of mainstream pressure gradient with converging main flow streamlines. The streamwise pressure distribution is attained by placing side inserts into the mainstream. The results are presented for five holes of staggered inclined cylindrical holes. The inclination angle is 30° and the tests were conducted at two Reynolds number, 5000 and 8000. Numerical analysis is employed to aid the understanding of the mainstream and coolant flow interaction. The solution of the computational domain is performed using FLUENT software package from Fluent, Inc. The use of second order schemes were used in this study to provide the highest accuracy available. This study employed the Realizable κ-ε model with enhance wall treatment for all its cases. Endwall temperature distribution is measured using Temperature Sensitive Paint (TSP) technique and film cooling effectiveness is calculated from the measurements and compared against numerical predictions. Results show that the characteristics of average film effectiveness near the stagnation region do not change drastically. However, as the blowing ratio is increased jet to jet interaction is enhanced due to higher jet spreading resulting in higher jet coverage. In the presence of wake, mixing of the jet with the mainstream is enhanced particularly for low M. The velocity deficit created by the wake forms a pair of vortices offset from the wake centerline. These vortices lift the jet off the wall promoting the interaction of the jet with the mainstream resulting in a lower effectiveness. The jet interaction with the mainstream causes the jet to lose its cooling capabilities more rapidly which leads to a more sudden decay in film effectiveness. When film is discharged into accelerating main flow with converging streamlines, row-to-row coolant flow rate is not uniform leading to varying blowing ratios and cooling performance. Jet to jet interaction is reduced and jet lift off is observed for rows with high blowing ratio resulting in lower effectiveness.
Show less - Date Issued
- 2008
- Identifier
- CFE0002425, ucf:47769
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002425
- Title
- Planar Laser Induced Fluorescence Experiments and Modeling Study of Jets in Crossflow at Various Injection Angles.
- Creator
-
Thompson, Luke, Vasu Sumathi, Subith, Kassab, Alain, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Planar Laser Induced Fluorescence (PLIF) with acetone seeding was applied to measure the scalar fields of an axisymmetric freejet and an inclined jet-in-crossflow as applicable to film cooling. From the scalar fields, jet-mixing and trajectory characteristics were obtained. In order to validate the technique, the canonical example of a nonreacting freejet of Reynolds Numbers 900-9000 was investigated. Desired structural characteristics were observed and showed strong agreement with...
Show morePlanar Laser Induced Fluorescence (PLIF) with acetone seeding was applied to measure the scalar fields of an axisymmetric freejet and an inclined jet-in-crossflow as applicable to film cooling. From the scalar fields, jet-mixing and trajectory characteristics were obtained. In order to validate the technique, the canonical example of a nonreacting freejet of Reynolds Numbers 900-9000 was investigated. Desired structural characteristics were observed and showed strong agreement with computational modeling. After validating the technique with the axisymmetric jet, the jet-in-crossflow was tested with various velocity ratios and jet injection angles. Results indicated the degree of wall separation for different injection angles and demonstrate both the time-averaged trajectories as well as select near-wall concentration results for varying jet momentum fluxes. Consistent with literature findings, the orthogonal jet trajectory for varying blowing ratios collapsed when scaled by the jet-to-freestream velocity ratio and hole diameter, rd. Similar collapsing was demonstrated in the case of a non-orthogonal jet. Computational Fluid Dynamic (CFD) simulations using the OpenFOAM software was used to compare predictions with select experimental cases, and yielded reasonable agreement. Insight into the importance and structure of the counter rotating vortex pair and general flow field turbulence was highlighted by cross validation between CFD and experimental results.
Show less - Date Issued
- 2015
- Identifier
- CFE0006057, ucf:50992
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006057
- Title
- PRELIMINARY STUDY ON THE IMPACT OF IMPINGEMENT ON THE EFFECTIVENESS OF FILM COOLING IN THE PRESENCE OF GAS PATH PRESSURE GRADIENT.
- Creator
-
Peravali, Anil, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Impingement is the most commonly used method of cooling in the hot stages of gas turbines. This is often combined with film cooling to further increase the cooling performance. The mainstream flow where in the coolant films discharge often has large stream wise pressure variations. All existing studies on coupled film and impingement cooling concentrated on the effect of the film depletion on the impingement heat transfer. This study investigates the impact of impingement on film cooling,...
Show moreImpingement is the most commonly used method of cooling in the hot stages of gas turbines. This is often combined with film cooling to further increase the cooling performance. The mainstream flow where in the coolant films discharge often has large stream wise pressure variations. All existing studies on coupled film and impingement cooling concentrated on the effect of the film depletion on the impingement heat transfer. This study investigates the impact of impingement on film cooling, where the jets impinging on a flat plate are depleted through arrays of film cooling holes in the presence of pressure gradient in the main gas path. The main characteristic of the test setup is that there is an impingement wall on the backside of the film effusion wall. The fluid used for both impingement flow and main flow is air. The impingement flow is heated as opposed to the usual practice of heating mainflow, and the array of film holes are configured under the impingement jet hole arrays such that there is no direct impingement on the film holes. The static pressure variations and Mach number (0.01 to 0.3) in the mainstream underneath the flat plate are controlled by inserts with varying flow area. The detailed temperature distribution on the film-covered surface is measured using the Temperature Sensitive Paint (TSP) technique, and film cooling effectiveness is calculated from the measurements. Results are presented for averaged impingement jet Reynolds numbers of 5000 and 8000. The effect of impingement on film effectiveness is studied by comparing the results from the two cases: one where film flow is directly supplied from a plenum and the other where the post- impingement flow is depleted through film effusion holes. The results are presented for cylindrical film cooling holes which are inclined at angles of 20 deg and 30 deg with respect to the target plate surface. The variation of the effectiveness of the film hole arrays along the mainstream are studied in detail. It is observed that the impingement through jet effects the pressure distribution on the target plate with film holes, which in turn affects the blowing rates of each row. The change in the blowing ratios because of a different pressure distribution on the impingement side of the target plate causes the effectiveness to change. From the results it is observed that the farther rows of impingement are affected by the pressure distribution underneath the film holes and have more flow through the film cooling rows, this increases the inlet flow of the films which increase the blowing ratios and in turn decreases the effectiveness of the film cooling holes. The pressure distribution and the change of effectiveness are studied in detail.
Show less - Date Issued
- 2006
- Identifier
- CFE0001445, ucf:47056
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001445
- Title
- STUDY OF DISCHARGE COEFFICIENT AND TRENDS IN FILM COOLING EFFECTIVENESS OF CONICAL HOLES WITH INCREASING DIFFUSION ANGLES.
- Creator
-
Zuniga, Humberto, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Previous studies indicate that increasing the diffusion angle in conical film-cooling holes leads to an improvement in their film cooling effectiveness. Discharge coefficient and film cooling effectiveness measurements are conducted to characterize this behavior. Part of the focus of this investigation is to find out how this trend develops and attempt to ascertain the optimum cone angle, if possible. Six test plates, each with one row of eight conical-shaped cooling holes of equal diffusion...
Show morePrevious studies indicate that increasing the diffusion angle in conical film-cooling holes leads to an improvement in their film cooling effectiveness. Discharge coefficient and film cooling effectiveness measurements are conducted to characterize this behavior. Part of the focus of this investigation is to find out how this trend develops and attempt to ascertain the optimum cone angle, if possible. Six test plates, each with one row of eight conical-shaped cooling holes of equal diffusion angles of 0, 1, 2, 3, 6, or 8º, with respect to the hole axis are used in this study. The ratios of the hole exit areas to the inlet areas range from 1 to 2.85. Coolant injection angle for all holes is at 35 degrees to the horizontal, in the direction of the main flow. Coefficients of discharge of all holes are reported under flow conditions. Temperature sensitive paint, TSP, is the technique used to find the temperature distribution downstream of the cooling holes and determine the laterally averaged film-cooling effectiveness. Data are obtained for blowing ratios ranging from 0.5 to 1.5, at a constant density ratio of 1.26. Results and trends are compared with established literature, which also recommends that a cylindrical entry length for diffused holes should be at least 4 diameters long. The effect that an added entry length has on the 3-degree conical plate's cooling effectiveness is also explored. Data are compared to baseline cylindrical holes, as well as to fan-shaped film holes found in open literature. Results indicate that the conical holes with larger diffusion angles provide strikingly even film protection and outperform fan shaped and cylindrical holes under certain conditions over extended downstream distances. Also, the addition of a cylindrical entry length to a conical hole, by providing a manageable metering diameter, should ease their usage while providing the full benefits of the conical geometry which may one day lead to numerous industrial applications.
Show less - Date Issued
- 2006
- Identifier
- CFE0001492, ucf:47087
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001492
- Title
- Surface Measurements and Predictions of Full-Coverage Film Cooling.
- Creator
-
Natsui, Gregory, Kapat, Jayanta, Raghavan, Seetha, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
Full-coverage film cooling is investigated both experimentally and numerically. First,surface measurements local of adiabatic film cooling eeffectiveness and heat transfer augmentation for four different arrays are described. Reported next is a comparison between two very common turbulence models, Realizable k-epsilon and SST k-omega, and their ability to predict local film cooling effectiveness throughout a full-coverage array.The objective of the experimental study is the quantification of...
Show moreFull-coverage film cooling is investigated both experimentally and numerically. First,surface measurements local of adiabatic film cooling eeffectiveness and heat transfer augmentation for four different arrays are described. Reported next is a comparison between two very common turbulence models, Realizable k-epsilon and SST k-omega, and their ability to predict local film cooling effectiveness throughout a full-coverage array.The objective of the experimental study is the quantification of local heat transferaugmentation and adiabatic film cooling effectiveness for four surfaces cooled by large, both in hole count and in non-dimensional spacing, arrays of film cooling holes. The four arrays are of two different hole-to-hole spacings (P=D = X=D = 14.5; 19.8) and two different hole inclination angles (alpha = 30°; 45°), with cylindrical holes compounded relative to the flow(beta = 45°) and arranged in a staggered configuration. Arrays of up to 30 rows are tested so that the superposition effect of the coolant film can be studied. In addition, shortened arrays of up to 20 rows of coolant holes are also tested so that the decay of the coolant film following injection can be studied.Levels of laterally averaged effectiveness reach values as high as η = 0.5, and are not yet at the asymptotic limit even after 20 - 30 rows of injection for all cases studied. Levels of heat transfer augmentation asymptotically approach values of h=h0 ≈ 1.35 rather quickly, only after 10 rows. It is conjectured that the heat transfer augmentation levels off very quickly due to the boundary layer reaching an equilibrium in which the perturbation from additional film rows has reached a balance with the damping effect resulting from viscosity. The levels of laterally averaged adiabatic film cooling effectiveness far exceeding eta = 0.5 aremuch higher than expected. The heat transfer augmentation levels off quickly as opposed tothe film effectiveness which continues to rise (although asymptotically) at large row numbers. This ensures that an increased row count represents coolant well spent.The numerical predictions are carried out in order to test the ability of the two mostcommon turbulence models to properly predict full-coverage film cooling. The two models chosen, Realizable k-epsilon (RKE) and Shear Stress Transport k-omega (SSTKW), areboth two-equation models coupled with Reynolds Averaged governing equations which makeseveral gross physical assumptions and require several empirical values. Hence, the modelsare not expected to provide perfect results. However, very good average values are seen tobe obtained through these simple models. Using RKE in order to model full-coverage filmcooling will yield results with 30% less error than selecting SSTKW.
Show less - Date Issued
- 2012
- Identifier
- CFE0004580, ucf:49221
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004580
- Title
- A Full Coverage Film Cooling Study: The Effect of an Alternating Compound Angle.
- Creator
-
Hodges, Justin, Kapat, Jayanta, Gordon, Ali, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
This thesis is an experimental and numerical full-coverage film cooling study. The objective of this work is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for two full-coverage film cooling geometries. Experimental data was acquired with a scientific grade CCD camera, where images are taken over the heat transfer surface, which is painted with a temperature sensitive paint. The CFD component of this study served to evaluate how well the v2-f...
Show moreThis thesis is an experimental and numerical full-coverage film cooling study. The objective of this work is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for two full-coverage film cooling geometries. Experimental data was acquired with a scientific grade CCD camera, where images are taken over the heat transfer surface, which is painted with a temperature sensitive paint. The CFD component of this study served to evaluate how well the v2-f turbulence model predicted film cooling effectiveness throughout the array, as compared with experimental data. The two staggered arrays tested are different from one another through a compound angle shift after 12 rows of holes. The compound angle shifts from ?=-45(&)deg; to ?=+45(&)deg; at row 13. Each geometry had 22 rows of cylindrical film cooling holes with identical axial and lateral spacing (X/D=P/D=23). Levels of laterally averaged film cooling effectiveness for the superior geometry approach 0.20, where the compound angle shift causes a decrease in film cooling effectiveness. Levels of heat transfer augmentation maintain values of nearly h/h0=1.2. There is no effect of compound angle shift on heat transfer augmentation observed. The CFD results are used to investigate the detrimental effect of the compound angle shift, while the SST k-? turbulence model shows to provide the best agreement with experimental results.
Show less - Date Issued
- 2015
- Identifier
- CFE0005626, ucf:50228
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005626
- Title
- CONJUGATE HEAT TRANSFER ANALYSIS OF COMBINED REGENERATIVE AND DISCRETE FILM COOLING IN A ROCKET NOZZLE.
- Creator
-
Pearce, Charlotte M, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Conjugate heat transfer analysis has been carried out on an 89kN thrust chamber in order to evaluate whether combined discrete film cooling and regenerative cooling in a rocket nozzle is feasible. Several cooling configurations were tested against a baseline design of regenerative cooling only. New designs include combined cooling channels with one row of discrete film cooling holes near the throat of the nozzle, and turbulated cooling channels combined with a row of discrete film cooling...
Show moreConjugate heat transfer analysis has been carried out on an 89kN thrust chamber in order to evaluate whether combined discrete film cooling and regenerative cooling in a rocket nozzle is feasible. Several cooling configurations were tested against a baseline design of regenerative cooling only. New designs include combined cooling channels with one row of discrete film cooling holes near the throat of the nozzle, and turbulated cooling channels combined with a row of discrete film cooling holes. Blowing ratio and channel mass flow rate were both varied for each design. The effectiveness of each configuration was measured via the maximum hot gas-side nozzle wall temperature, which can be correlated to number of cycles to failure. A target maximum temperature of 613K was chosen. Combined film and regenerative cooling, when compared to the baseline regenerative cooling, reduced the hot gas side wall temperature from 667K to 638K. After adding turbulators to the cooling channels, combined film and regenerative cooling reduced the temperature to 592K. Analysis shows that combined regenerative and film cooling is feasible with significant consequences, however further improvements are possible with the use of turbulators in the regenerative cooling channels.
Show less - Date Issued
- 2016
- Identifier
- CFH2000138, ucf:45923
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000138
- Title
- Experimental and Numerical Study of Endwall Film Cooling.
- Creator
-
Mahadevan, Srikrishna, Kapat, Jayanta, Verma, Shashi, Vasu Sumathi, Subith, Ahmed, Kareem, Shivamoggi, Bhimsen, University of Central Florida
- Abstract / Description
-
This research work investigates the thermal performance of a film-cooled gas turbine endwall under two different mainstream flow conditions. In the first part of the research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-curved surface (representing an endwall without airfoils) was experimentally studied for heat transfer characteristics on a time-averaged basis. The temperature sensitive paint technique was used to obtain the local temperatures on the test...
Show moreThis research work investigates the thermal performance of a film-cooled gas turbine endwall under two different mainstream flow conditions. In the first part of the research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-curved surface (representing an endwall without airfoils) was experimentally studied for heat transfer characteristics on a time-averaged basis. The temperature sensitive paint technique was used to obtain the local temperatures on the test surface. The required heat flux input was provided using foil heaters. Discrete film injection was implemented on the test surface using cylindrical holes with a streamwise inclination angle of 35? and no compound angle relative to the mean approach velocity vector. The passing wakes increased the heat transfer coefficients at both the wake passing frequencies that were experimented. Due to the increasing film cooling jet turbulence and strong jet-mainstream interaction at higher blowing ratios, the heat transfer coefficients were amplified. A combination of film injection and unsteady passing wakes resulted in a maximum pitch-averaged and centerline heat transfer augmentation of ? 28% and 31.7% relative to the no wake and no film injection case. The second part of the research study involves an experimental and numerical analysis of secondary flow and coolant film interaction in a high subsonic annular cascade with a maximum isentropic throat Mach number of ? 0.68. Endwall (platform) thermal protection is provided using discrete cylindrical holes with a streamwise inclination angle of 30? and no compound angle relative to the mean approach velocity vector. The surface flow visualization on the inner endwall provided the location of the saddle point and the three-dimensional separation lines. Computational predictions showed that the leading-edge horseshoe vortex was confined to approximately 1.5% of the airfoil span for the no film injection case and intensified with low momentum film injection. At the highest blowing ratio, the film cooling jet weakened the horseshoe vortex at the leading-edge plane. The passage vortex was intensified with coolant injection at all blowing ratios. It was seen that increasing average blowing ratio improved the film effectiveness on the endwall. The discharge coefficients calculated for each film cooling hole indicated significant non-uniformity in the coolant discharge at lower blowing ratios and the strong dependence of discharge coefficients on the mainstream static pressure and the location of three-dimensional separation lines. Near the airfoil suction side, a region of coalesced film cooling jets providing close to uniform film coverage was observed, indicative of the mainstream acceleration and the influence of three-dimensional separation lines.
Show less - Date Issued
- 2015
- Identifier
- CFE0005973, ucf:50775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005973
- Title
- COMPARISON OF SQUARE-HOLE AND ROUND-HOLE FILM COOLING: A COMPUTATIONAL STUDY.
- Creator
-
Durham, Michael Glenn, Kapat, Jay, University of Central Florida
- Abstract / Description
-
Film cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately...
Show moreFilm cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately downstream of the exit of a film cooling hole, a so-called horseshoe vortex structure consisting of a pair of counter-rotating vortices is formed. This vortex formation has an effect on the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices is dependent upon the shape of the film cooling holes, and therefore so is the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for circular and square hole cases for blowing ratios of 0.33, 0.50, 0.67, 1.00, and 1.33. The film cooling effectiveness values obtained are compared with experimental and computational data of Yuen and Martinez-Botas (2003a) and Walters and Leylek (1997). It was found that in the main flow portion of the domain immediately downstream of the cooling hole exit, there is greater lateral separation between the vortices in the horseshoe vortex pair for the case of the square hole. This was found to result in the square hole providing greater centerline film cooling effectiveness immediately downstream of the hole and better lateral film coolant coverage far downstream of the hole.
Show less - Date Issued
- 2004
- Identifier
- CFE0000044, ucf:46080
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000044
- Title
- TOWARD INCREASING PERFORMANCE AND EFFICIENCY IN GAS TURBINES FOR POWER GENERATION AND AERO-PROPULSION: UNSTEADY SIMULATION OF ANGLED DISCRETE-INJECTION COOLANT IN A HOT GAS PATH CROSSFLOW.
- Creator
-
Johnson, Perry, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
This thesis describes the numerical predictions of turbine film cooling interactions using Large Eddy Simulations. In most engineering industrial applications, the Reynolds-Averaged Navier-Stokes equations, usually paired with two-equation models such as k-[epsilon] or k-[omega], are utilized as an inexpensive method for modeling complex turbulent flows. By resolving the larger, more influential scale of turbulent eddies, the Large Eddy Simulation has been shown to yield a significant...
Show moreThis thesis describes the numerical predictions of turbine film cooling interactions using Large Eddy Simulations. In most engineering industrial applications, the Reynolds-Averaged Navier-Stokes equations, usually paired with two-equation models such as k-[epsilon] or k-[omega], are utilized as an inexpensive method for modeling complex turbulent flows. By resolving the larger, more influential scale of turbulent eddies, the Large Eddy Simulation has been shown to yield a significant increase in accuracy over traditional two-equation RANS models for many engineering flows. In addition, Large Eddy Simulations provide insight into the unsteady characteristics and coherent vortex structures of turbulent flows. Discrete hole film cooling is a jet-in-cross-flow phenomenon, which is known to produce complex turbulent interactions and vortex structures. For this reason, the present study investigates the influence of these jet-crossflow interactions in a time-resolved unsteady simulation. Because of the broad spectrum of length scales present in moderate and high Reynolds number flows, such as the present topic, the high computational cost of Direct Numerical Simulation was excluded from possibility.
Show less - Date Issued
- 2011
- Identifier
- CFH0004086, ucf:44798
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004086
- Title
- STUDY OF FILM COOLING EFFECTIVENESS: CONICAL, TRENCHED AND ASYMMETRICAL SHAPED HOLES.
- Creator
-
Zuniga, Humberto, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Film cooling is a technique whereby air from the compressor stage of a gas turbine engine is diverted for cooling purposes to parts, such as the turbine stage, that operate at very high temperatures. Cooling arrangements include impingement jets, finned, ribbed and turbulated channels, and rows of film cooling holes, all of which over the years have become progressively more complex. This costly, but necessary complexity is a result of the industry's push to run engines at increasingly higher...
Show moreFilm cooling is a technique whereby air from the compressor stage of a gas turbine engine is diverted for cooling purposes to parts, such as the turbine stage, that operate at very high temperatures. Cooling arrangements include impingement jets, finned, ribbed and turbulated channels, and rows of film cooling holes, all of which over the years have become progressively more complex. This costly, but necessary complexity is a result of the industry's push to run engines at increasingly higher turbine inlet temperatures. Higher temperatures mean higher efficiency, but they also mean that the turbine first stage operates hundreds of degrees Kelvin above the melting point of the metal core of the vanes and blades. Existing cooling technology and materials make it possible to protect these parts and allow them to function for extended periods of time--but this comes at a price: the compressed air that is used for cooling represents a considerable penalty in overall turbine efficiency. The aim of current cooling research is threefold: to improve the protection of components from extreme fluxes in order to extend the life of the parts; to increase the inlet turbine operating temperature; and to reduce the amount of air that is diverted from the compressor for cooling. Current film cooling schemes consist of forcing air through carefully machined holes on a part and ejecting it at an angle with the intent of cooling that part by blanketing the surface downstream of the point of ejection. The last major development in the field has been the use of expanded hole exits, which reduce coolant momentum and allow for greater surface coverage. Researchers and designers are continuously looking for novel geometries and arrangements that would increase the level of protection or maintain it while using less coolant. This dissertation investigates such novel methods which one day may include combinations of cylindrical and fan-shaped holes embedded inside trenches, conical holes, or even rows of asymmetric fan-shaped holes. The review of current literature reveals that very few investigations have been done on film cooling effectiveness for uniformly diffusing conical holes. They have been treated as a sort of side novelty since industrial partners often say they are hard to manufacture. To extend our understanding of effectiveness of conical holes, the present study investigates the effect of increasing diffusion angle, as well as the effect of adding a cylindrical entrance length to a conical hole. The measurements were made in the form of film cooling effectiveness and the technique used was temperature sensitive paint. Eight different conical geometries were tested in the form of coupons with rows of holes. The geometry of the holes changed from pure cylindrical holes, a 0° cylindrical baseline, to an 8° pure cone. The coupons were tested in a closed loop wind tunnel at blowing ratios varying from 0.5 to 1.5, and the coolant employed was nitrogen gas. Results indicate that the larger conical holes do, in fact offer appropriate protection and that the holes with the higher expansion angles perform similar to fan-shaped baseline holes, even at the higher blower ratios. The study was also extended to two other plates in which the conical hole was preceded by a cylindrical entry length. The performance of the conical holes improves as a result of the entry length and this is seen at the higher blowing ratios in the form of a delay in the onset of jet detachment. The results of this study show that conical expanding holes are a viable geometry and that their manufacturing can be made easier with a cylindrical entry length, at the same time improving the performance of these holes. Trench cooling consists of having film cooling holes embedded inside a gap, commonly called a trench. The walls of this gap are commonly vertical with respect to the direction of the main flow and are directly in the path of the coolant. The coolant hits the downstream trench wall which forces it to spread laterally, resulting in more even film coverage downstream than that of regular holes flush with the surface. Recent literature has focused on the effect that trenching has on cylindrical cooling holes only. While the results indicate that trenches are an exciting, promising new geometry derived from the refurbishing process of thermal barrier ceramic coatings, not all the parameters affecting film cooling have been investigated relating to trenched holes. For example, nothing has been said about how far apart holes inside the trench will need to be placed for them to stop interacting. Nothing has been said about shaped holes inside a trench, either. This dissertation explores the extent to which trenching is useful by expanding the PI/D from 4 to 12 for rows of round and fan holes. In addition the effect that trenching has on fan-shaped holes is studied by systematically increasing the trench depth. Values of local, laterally-averaged and spatially-averaged film cooling effectiveness are reported. It is found that placing the cylinders inside the trench and doubling the distance between the holes provides better performance than the cylindrical, non-trenched baseline, especially at the higher blowing ratios, M > 1.0. At these higher coolant flow rates, the regular cylindrical jets show detachment, while those in the trench do not. They, in fact perform very well. The importance of this finding implies that the number of holes, and coolant, can be cut in half while still improving performance over regular holes. The trenched cylindrical holes did not, however, perform like the fan shaped holes. It was found that the performance of fan-shaped holes inside trenches is actually diminished by the presence of the trench. It is obvious, since the fan diffuses the flow, reducing the momentum of the coolant; the addition of the trench further slows the flow down. This, in turn, leads to the quicker ingestion of the main flow by the jets resulting in lower effectiveness. The next part of the study consisted of systematically increasing the depth of the trench for the fan-shaped holes. The purpose of this was to quantify the effect of the trench on the film cooling effectiveness. It was found that the presence of the trench significantly reduces the film effectiveness, especially for the deeper cases. At the higher blowing ratios, the overall performance of the fans collapses to the same value signifying insensitivity to the blowing ratio. A recent study suggests that having a compound angle could reduce the protective effect of the film due to the elevated interaction between the non-co-flowing coolant jet and the mainstream. Although it has been suggested that a non-symmetric lateral diffusion could mitigate the ill effects of having a compound angle, little has been understood on the effect this non-symmetry has on film cooling effectiveness. The last part of this study investigates the effect of non-symmetric lateral diffusion on film cooling effectiveness by systematically varying one side of a fan-shaped hole. For this part of the study, one of the lateral angles of diffusion of a fan-shaped hole was changed from 5° to 13°, while the other side was kept at 7°. It was found that a lower angle of diffusion hurts performance, while a larger diffusion angle improves it. However, the more significant result was that the jet seemed to be slightly turning. This suggests that the jets actually have two regions: one region with reduced momentum, ideal for protecting a large area downstream of the point of injection; and another region with more integrity which could withstand more aggressive main flow conditions. A further study should be conducted for this geometry at compound angles with the main flow to test this theory. The studies conducted show that the temperature sensitive paint technique can be used to study the performance of film cooling holes for various geometries. The studies also show the film cooling performance of novel geometries and explain why, in some cases, such new arrangements are desirable, and in others, how they can hurt performance. The studies also point in the direction of further investigations in order to advance cooling technology to more effective applications and reduced coolant consumption, the main goal of applied turbine cooling research.
Show less - Date Issued
- 2009
- Identifier
- CFE0002831, ucf:48082
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002831
- Title
- Statistical Analysis of Multi-Row Film Cooling Flowfields.
- Creator
-
Fernandes, Craig, Kapat, Jayanta, Ahmed, Kareem, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
A huge part of modern day power generation research and development strives to achievehigher thermal efficiencies and specific work outputs for both gas turbine Brayton and combinedcycles. Advances in cooling technologies, both internal to turbine blades and external, provide the easiest way to accomplish this by raising the turbine inlet temperature far beyond the super-alloy's allowable temperature. Discrete film cooling injection, an external cooling technique, ensures a cool blanket of...
Show moreA huge part of modern day power generation research and development strives to achievehigher thermal efficiencies and specific work outputs for both gas turbine Brayton and combinedcycles. Advances in cooling technologies, both internal to turbine blades and external, provide the easiest way to accomplish this by raising the turbine inlet temperature far beyond the super-alloy's allowable temperature. Discrete film cooling injection, an external cooling technique, ensures a cool blanket of compressed air protects the blade surface from the harsh mainstream gas. To optimize the coverage and effectiveness of the film, a thorough understanding of the behavior andflow physics is necessary.The objective of the current study is to use hotwire anemometry as a tool to conduct 1D timeresolved turbulent measurements on the flow field of staggered multi-row film cooling arrays withcylindrical and diffuser shaped holes inclined at 20 degrees to the freestream. The study aims toinvestigate the flowfield to determine why the performance of diffuser shaped jets is enhanced even at comparatively high blowing ratios. In addition, blowing ratio effects and flowfield discrepanciesat set downstream locations in the array centerline plane are also investigated.The experiments are conducted on an open-loop wind tunnel for blowing ratios in the rangeof 0.3 to 1.5 at a density ratio of 1. Boundary layer measurements were taken at 12 locations atthe array centerline to obtain mean velocity, turbulence level, turbulence intensity, and integral length scales. Measurements were also taken at a location upstream of the array to characterize the incoming boundary layer and estimate the wall normal position of the probe in comparison with the logarithmic law of the wall.Mean effective velocity profiles were found to scale with blowing ratio for both geometries.A strong dependence of turbulence levels on velocity gradients between jets and the local fluid was also noticed. For cylindrical jets, attached cases displayed lower integral length scales in the nearwall region compared with higher blowing ratio cases. This was found to be due to entrainmentof mainstream fluid showing increased momentum transport below the jets. Diffuser cases atall blowing ratios tested do not show increased length scales near the wall demonstrating theirenhanced surface coverage. Row-to-row discrepancies in mean velocity and turbulence level are only evident at extremely high blowing cases for cylindrical, but show significant deviations for diffuser cases at all blowing ratios.Unlike the cylindrical cases, jets from diffuser shaped holes, due to their extremely low injecting velocities, dragged the boundary layer with each row of blowing. Increased velocity gradients create a rise in peak turbulence levels at downstream locations. At high blowing ratios however, faster moving fluid, due to injection, at lower elevations acts as a shield for downstream jets allowing significantly further propagation downstream. Near the wall low magnitude integral length scales are noticed for diffuser jets indicating low momentum transport in this region.The results show good agreement with effectiveness measurements of a previous study at a higher density ratio. However, to accurately draw the comparison, effectiveness measurements should be conducted at a density ratio of 1. Recommendations were made to further the study of multi-row film cooled boundary layers. The scope includes a CFD component, other flowfield measurement techniques, and surface effectiveness studies using Nitrogen as the coolant for a much broader picture of this flowfield.
Show less - Date Issued
- 2017
- Identifier
- CFE0006738, ucf:51863
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006738
- Title
- Heat Transfer in a Coupled Impingement-Effusion Cooling System.
- Creator
-
Miller, Mark, Kapat, Jayanta, Deng, Weiwei, Gordon, Ali, University of Central Florida
- Abstract / Description
-
The efficiency of air-breathing gas turbine engines improves as the combustion temperature increases. Therefore, modern gas turbines operate at temperatures greater than the melting temperature of hot-gas-path components, and cooling must be introduced in order to maintain mechanical integrity of those components. Two highly effective techniques used in modern designs for this purpose are impingement cooling and use of coolant film on hot-gas-path surface introduced through discrete film or...
Show moreThe efficiency of air-breathing gas turbine engines improves as the combustion temperature increases. Therefore, modern gas turbines operate at temperatures greater than the melting temperature of hot-gas-path components, and cooling must be introduced in order to maintain mechanical integrity of those components. Two highly effective techniques used in modern designs for this purpose are impingement cooling and use of coolant film on hot-gas-path surface introduced through discrete film or effusion holes. In this study, these two mechanisms are coupled into a single prototype cooling system. The heat transfer capability of this system is experimentally determined for a variety of different geometries and coolant flow rates.This study utilizes Temperature Sensitive Paint (TSP) in order to measure temperature distribution over a surface, which allowed for local impingement Nusselt number, film cooling effectiveness, and film cooling heat transfer enhancement profiles to be obtained. In addition to providing quantitative heat transfer data, this method allowed for qualitative investigation of the flow behavior near the test surface. Impinging jet-to-target-plate spacing was varied over a large range, including several tall impingement scenarios outside the published limits. Additionally, both in-line and staggered effusion arrangements were studied, and results for normal injection were compared to full coverage film cooling with inclined- and compound-angle injection. Effects of impingement and effusion cooling were combined to determine the overall cooling effectiveness of the system.It is shown that low impingement heights produce the highest Nusselt number, and that large jet-to-jet spacing reduces coolant flow rate while maintaining moderate to high heat transfer rates. Staggered effusion configurations exhibit superior performance to in-line configurations, as jet interference is reduced and surface area coverage is improved. Coolant to mainstream flow mass flux ratios greater than unity result in jet blow-off and reduced effectiveness. The convective heat transfer coefficient on the film cooled surface is higher than a similar surface without coolant injection due to the generation of turbulence associated with jet-cross flow interaction.
Show less - Date Issued
- 2011
- Identifier
- CFE0004140, ucf:49042
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004140
- Title
- Hydrodynamic Measurements of the Flow Structure Emanating From A Multi-Row Film Cooling Configuration.
- Creator
-
Voet, Michael, Kapat, Jayanta, Vasu Sumathi, Subith, Ahmed, Kareem, University of Central Florida
- Abstract / Description
-
The demand for more power is rapidly increasing worldwide. Attention is turned to increasingthe efficiency of modern methods for power generation. Gas turbines provide 35% of the powerdemands within the United States. Efficiency of gas turbines is defined in an ideal sense by thethermal efficiency of the Brayton Cycle. The overall efficiency of a gas turbine can be increased while simultaneously maximizing specific work output, by increasing the turbine inlet temperature. However, even with...
Show moreThe demand for more power is rapidly increasing worldwide. Attention is turned to increasingthe efficiency of modern methods for power generation. Gas turbines provide 35% of the powerdemands within the United States. Efficiency of gas turbines is defined in an ideal sense by thethermal efficiency of the Brayton Cycle. The overall efficiency of a gas turbine can be increased while simultaneously maximizing specific work output, by increasing the turbine inlet temperature. However, even with the advancements in modern materials in terms of maximum operatingtemperature, various components are already subjected to temperatures higher than their melting temperatures. An increase in inlet temperature would subject various components to even higher temperatures, such that more effective cooling would be necessary, whilst ideally using the same (or less) amount of cooling air bled from compressor. Improvements in the performance of these cooling techniques is thus required. The focus of this thesis is on one such advanced cooling technique, namely film cooling.The objective of this study is to investigate the effects of coolant density on the jet structure for different multi-row film cooling configurations. As research is performed on improving the performance of film cooling, the available conditions during testing may not reflect actual engine-like conditions. Typical operating density ratio at engine conditions are between 1.5 and 2, while it is observed that a majority of the density ratios tested in literature are between 1 and 1.5. While thesetests may be executed outside of engine-like conditions, it is important to understand how density ratio effects the flow physics and film cooling performance. The density ratio within this study is varied between 1.0 and 1.5 by alternating the injecting fluid between air and Carbon Dioxide, respectively.Both a simple cylindrical and fan-shape multi-row film cooling configuration are tested in the present study. In order to compare the results collected from these geometries, lateral and spanwise hole-to-hole spacing, metering hole diameter, hole length, and inclination angle are held constant between all testing configurations. The effect of fluid density upon injection is examined by independently holding either blowing, momentum flux, or velocity ratio constant whilst varying density ratio. Comparisons between both of the film cooling configurations are also made as similar ratios are tested between geometries. This allows the variation in flow structure and performance to be observed from alternating the film cooling hole shape.Particle Image Velocimetry (PIV) is implemented to obtain both streamwise and wall normal velocitymeasurements for the array centerline plane. This data is used to examine the interactionof the jet as it leaves the film cooling hole and the structure produced when the jet mixes with theboundary layer.Similarities in jet to jet interactions and surface attachment between density ratios are seen for the cylindrical configuration when momentum flux ratio is held constant. When observing constant blowing ratio comparisons of the cylindrical configurations, the lower density ratio is seen to begin detaching from the wall at M = 0.72 with little evidence of coolant in the near wall region. However, the higher density cylindrical injection retains its surface attachment at M = 0.74 with noticeably more coolant near the wall, because of significantly lower momentum flux ratio and lower (")jetting(") effect. The fan-shape film cooling configuration demonstrates improved performance, in terms of surface attachment, over a larger range of all ratios than that of the cylindrical cases. Additionally, the fan-shape configuration is shown to constantly retain a thicker layer of low velocity fluid in the near wall region when injected with the higher density coolant, suggesting improved performance at the higher density ratio.When tracking the jet trajectory, it is shown that the injection of CO2 through the cylindricalconfiguration yields a higher centerline wall normal height per downstream location than that of the lower density fluid. Comparing the results of the centerline tracking produced by the third and fifth rows for both the injection of air and CO2, it is confirmed that the fifth row of injection interacts with the boundary layer at a great wall normal height than that of the third row. Additionally, when observing the change in downstream trajectory between the fifth and seventh row of injection, a significant decrease in wall normal height is seen for the coolant produced by the seventh row. It is believed that the lack of a ninth row of injection allows the coolant from the seventh row of injection to remain closer to the target surface. This is further supported by the observation of the derived pressure gradient field and the path streamlines take while interacting with the recirculatory region produced by the injection of coolant into the boundary layer.Further conclusions are drawn by investigating the interaction between momentum thickness andthe influence of blowing ratio. Relatively constant downstream momentum thickness is observedfor the injection of lower density fluid for the blowing ratio range of M= 0.4 to 0.8 for the cylindrical configuration. It is suggested that a correlation exists between momentum thickness and film cooling performance, however further studies are needed to validate this hypothesis.
Show less - Date Issued
- 2017
- Identifier
- CFE0006817, ucf:51791
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006817
- Title
- FILM COOLING WITH WAKE PASSING APPLIED TO AN ANNULAR ENDWALL.
- Creator
-
Tran, Nghia, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Advancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect...
Show moreAdvancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect the engine surface from the extremely hot incoming gas, which is at a temperature much higher than allowable temperature of even the most advanced super alloy used in turbine. Film cooling performance is affected by many factors: geometrical factors and as well as flow conditions. In most of the film cooling literature, film effectiveness has been used as criterion to judge and/or compare between film cooling designs. Film uniformity is also a critical factor, since it determines how well the coolant spread out downstream to protect the hot-gas-path surface of a gas turbine engine. Even after consideration of all geometrical factors and flow conditions, the film effectiveness is still affected by the stator-rotor interaction, in particular by the moving wakes produced by upstream airfoils. A complete analysis of end wall film cooling inside turbine is required to fully understand the phenomena. This full analysis is almost impossible in the academic arena. Therefore, a simplified but critical experimental rig and computational fluid model were designed to capture the effect of wake on film cooling inside an annular test section. The moving wakes are created by rotating a wheel with 12 spokes or rods with a variable speed motor. Thus changing the motor speed will alter the wake passing frequency. This design is an advancement over most previous studies in rectangular duct, which cannot simulate wakes in an annular passage as in an engine. This rig also includes film injection that allows study of impact of moving wakes on film cooling. This wake is a simplified representation of the trailing edge created by an upstream airfoil. An annulus with 30ð pitch test section is considered in this study. This experimental rig is based on an existing flat plate film cooling (BFC) rig that has been validated in the past. Measurement of velocity profiles within the moving wake downstream from the wake generator is used to validate the CFD rotating wake model. The open literature on film cooling and past experiments performed in the laboratory validated the CFD film cooling model. With these validations completed, the full CFD model predicts the wake and film cooling interaction. Nine CFD cases were considered by varying the film cooling blowing ratio and the wake Strouhal number. The results indicated that wakes highly enhance film cooling effectiveness near film cooling holes and degrades the film blanket downstream of the film injection, at the moment of wake passing. However, the time-averaged film cooling effectiveness is more or less the same with or without wake.
Show less - Date Issued
- 2010
- Identifier
- CFE0003483, ucf:48956
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003483
- Title
- Adiabatic Film Cooling Effectiveness of a Transpiration-Cooled Leading Edge Fabricated by Laser Additive Manufacturing.
- Creator
-
Calderon, Luisana, Kapat, Jayanta, Raghavan, Seetha, Mingareev, Ilya, University of Central Florida
- Abstract / Description
-
Laser additive manufacturing (LAM) is an emerging technology capable of fabricating complex geometries not possibly made by investment casting methods for gas turbine applications. LAM techniques consist of building parts in a layer-by-layer process by selectively melting metal powders. In the present study, a mock leading edge segment of a turbine blade fabricated by LAM of Inconel 718 powders is investigated. For this particular design, the traditional showerhead film cooling holes have...
Show moreLaser additive manufacturing (LAM) is an emerging technology capable of fabricating complex geometries not possibly made by investment casting methods for gas turbine applications. LAM techniques consist of building parts in a layer-by-layer process by selectively melting metal powders. In the present study, a mock leading edge segment of a turbine blade fabricated by LAM of Inconel 718 powders is investigated. For this particular design, the traditional showerhead film cooling holes have been replaced by two strips containing engineered-porous regions with the purpose of simulating the effect of transpiration cooling. Transpiration cooling has been considered a promising external convective cooling method capable of providing a more uniform film and higher adiabatic film cooling effectiveness than conventional discrete film cooling. In addition, many studies have shown that this technique can yield high firing temperatures with much less coolant consumption than discrete film cooling. In this current study, adiabatic film cooling effectiveness is investigated by means of mass transfer using pressure sensitive paint (PSP). The experiments are conducted for blowing ratios ranging between M = 0.03 and M = 0.28 for a nominal density ratio of 1.5. The density ratio is obtained by using air as the mainstream flow and CO2 as the secondary flow (or coolant source). Results indicate higher coverage and film cooling effectiveness when increasing blowing ratio at the expense of higher pressure drop. In addition, the experimental results are compared to numerical analyses performed using steady state Reynolds Average Navier Stokes (RANS) simulations.
Show less - Date Issued
- 2018
- Identifier
- CFE0007315, ucf:52117
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007315
- Title
- AN EXPERIMENTAL AND NUMERICAL STUDY OF SECONDARY FLOWS AND FILM COOLING EFFECTIVENESS IN A TRANSONIC CASCADE.
- Creator
-
Kullberg, James, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
In the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these...
Show moreIn the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these temperatures are already well above the melting temperature of the components. A primary cooling methodology, called film cooling, creates a blanket of cool air over the surface and is an effective way to help protect these components from the hot mainstream gasses. This paper focuses on the effect of the film holes upstream of the first row of blades in the turbine because this is the section that experiences the highest thermal stresses. Many factors can determine the effectiveness of the film cooling, so a complete understanding can lead to effective results with the minimum flow rate of coolant air. Many studies have been published on the subject of film cooling, but because of the difficulty and expense of simulating turbine realistic conditions, many authors introduce vast simplifications such as low speed conditions or linear cascades. These simplifications do not adequately represent the behavior of a turbine and therefore their results are of limited use. This study attempts to eliminate many of those simplifications. The test rig used in this research is based on the NASA-GE E3 design, which stands for Energy Efficient Engine. It was introduced into the public domain to provide an advanced platform from which open-literature research could be performed. Experimental tests on a transonic annular rig are time-consuming and expensive, so it is desirable to use experimental results to validate a computational model which can then be used to extract much more information. The purpose of this work is to create a numerical model that can be used to simulate many different scenarios and then to apply these results to experimental data.
Show less - Date Issued
- 2011
- Identifier
- CFH0003772, ucf:44728
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0003772
- Title
- INVERSE BOUNDARY ELEMENT/GENETIC ALGORITHM METHOD FOR RECONSTRUCTION OF MULTI-DIMENSIONAL HEAT FLUX DISTRIBUTIONS WITH FILM COOLING APPLICATIONS.
- Creator
-
Silieti, Mahmood, Kassab, Alain, University of Central Florida
- Abstract / Description
-
A methodology is formulated for the solution of the inverse problem concerned with the reconstruction of multi-dimensional heat fluxes for film cooling applications. The motivation for this study is the characterization of complex thermal conditions in industrial applications such as those encountered in film cooled turbomachinery components. The heat conduction problem in the metal endwall/shroud is solved using the boundary element method (bem), and the inverse problem is solved using a...
Show moreA methodology is formulated for the solution of the inverse problem concerned with the reconstruction of multi-dimensional heat fluxes for film cooling applications. The motivation for this study is the characterization of complex thermal conditions in industrial applications such as those encountered in film cooled turbomachinery components. The heat conduction problem in the metal endwall/shroud is solved using the boundary element method (bem), and the inverse problem is solved using a genetic algorithm (ga). Thermal conditions are overspecified at exposed surfaces amenable to measurement, while the temperature and surface heat flux distributions are unknown at the film cooling hole/slot walls. The latter are determined in an iterative process by developing two approaches. The first approach, developed for 2d applications, solves an inverse problem whose objective is to adjust the film cooling hole/slot wall temperatures and heat fluxes until the temperature and heat flux at the measurement surfaces are matched in an overall heat conduction solution. The second approach, developed for 2d and 3d applications, is to distribute a set of singularities (sinks) at the vicinity of the cooling slots/holes surface inside a fictitious extension of the physical domain or along cooling hole centerline with a given initial strength distribution. The inverse problem iteratively alters the strength distribution of the singularities (sinks) until the measuring surfaces heat fluxes are matched. The heat flux distributions are determined in a post-processing stage after the inverse problem is solved. The second approach provides a tremendous advantage in solving the inverse problem, particularly in 3d applications, and it is recommended as the method of choice for this class of problems. It can be noted that the ga reconstructed heat flux distributions are robust, yielding accurate results to both exact and error-laden inputs. In all cases in this study, results from experiments are simulated using a full conjugate heat transfer (cht) finite volume models which incorporate the interactions of the external convection in the hot turbulent gas, internal convection within the cooling plena, and the heat conduction in the metal endwall/shroud region. Extensive numerical investigations are undertaken to demonstrate the significant importance of conjugate heat transfer in film cooling applications and to identify the implications of various turbulence models in the prediction of accurate and more realistic surface temperatures and heat fluxes in the cht simulations. These, in turn, are used to provide numerical inputs to the inverse problem. Single and multiple cooling slots, cylindrical cooling holes, and fan-shaped cooling holes are considered in this study. The turbulence closure is modeled using several two-equation approach, the four-equation turbulence model, as well as five and seven moment reynolds stress models. The predicted results, by the different turbulence models, for the cases of adiabatic and conjugate models, are compared to experimental data reported in the open literature. Results show the significant effects of conjugate heat transfer on the temperature field in the film cooling hole region, and the additional heating up of the cooling jet itself. Moreover, results from the detailed numerical studies presented in this study validate the inverse problem approaches and reveal good agreement between the bem/ga reconstructed heat fluxes and the cht simulated heat fluxes along the inaccessible cooling slot/hole walls
Show less - Date Issued
- 2004
- Identifier
- CFE0000166, ucf:52896
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000166