Current Search: influence maximization (x)
View All Items
- Title
- SPARSIFICATION OF SOCIAL NETWORKS USING RANDOM WALKS.
- Creator
-
Wilder, Bryan, Sukthankar, Gita, University of Central Florida
- Abstract / Description
-
Analysis of large network datasets has become increasingly important. Algorithms have been designed to find many kinds of structure, with numerous applications across the social and biological sciences. However, a tradeoff is always present between accuracy and scalability; otherwise promising techniques can be computationally infeasible when applied to networks with huge numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify the graph by retaining only...
Show moreAnalysis of large network datasets has become increasingly important. Algorithms have been designed to find many kinds of structure, with numerous applications across the social and biological sciences. However, a tradeoff is always present between accuracy and scalability; otherwise promising techniques can be computationally infeasible when applied to networks with huge numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify the graph by retaining only a subset of its edges. The reduced network could prove much more tractable. For this thesis, I propose a new sparsification algorithm that preserves the properties of a random walk on the network. Specifically, the algorithm finds a subset of edges that best preserves the stationary distribution of a random walk by minimizing the Kullback-Leibler divergence between a walk on the original and sparsified graphs. A highly efficient greedy search strategy is developed to optimize this objective. Experimental results are presented that test the performance of the algorithm on the influence maximization task. These results demonstrate that sparsification allows near-optimal solutions to be found in a small fraction of the runtime that would required using the full network. Two cases are shown where sparsification allows an influence maximization algorithm to be applied to a dataset that previous work had considered intractable.
Show less - Date Issued
- 2015
- Identifier
- CFH0004732, ucf:45387
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004732
- Title
- Identifying Influential Agents in Social Systems.
- Creator
-
Maghami, Mahsa, Sukthankar, Gita, Turgut, Damla, Wu, Annie, Boloni, Ladislau, Garibay, Ivan, University of Central Florida
- Abstract / Description
-
This dissertation addresses the problem of influence maximization in social networks. Influence maximization is applicable to many types of real-world problems, including modeling contagion, technology adoption, and viral marketing. Here we examine an advertisement domain in which the overarching goal is to find the influential nodes in a social network, based on the network structure and the interactions, as targets of advertisement. The assumption is that advertisement budget limits prevent...
Show moreThis dissertation addresses the problem of influence maximization in social networks. Influence maximization is applicable to many types of real-world problems, including modeling contagion, technology adoption, and viral marketing. Here we examine an advertisement domain in which the overarching goal is to find the influential nodes in a social network, based on the network structure and the interactions, as targets of advertisement. The assumption is that advertisement budget limits prevent us from sending the advertisement to everybody in the network. Therefore, a wise selection of the people can be beneficial in increasing the product adoption. To model these social systems, agent-based modeling, a powerful tool for the study of phenomena that are difficult to observe within the confines of the laboratory, is used.To analyze marketing scenarios, this dissertation proposes a new method for propagating information through a social system and demonstrates how it can be used to develop a product advertisement strategy in a simulated market. We consider the desire of agents toward purchasing an item as a random variable and solve the influence maximization problem in steady state using an optimization method to assign the advertisement of available products to appropriate messenger agents. Our market simulation 1) accounts for the effects of group membership on agent attitudes 2) has a network structure that is similar to realistic human systems 3) models inter-product preference correlations that can be learned from market data. The results on synthetic data show that this method is significantly better than network analysis methods based on centrality measures.The optimized influence maximization (OIM) described above, has some limitations. For instance, it relies on a global estimation of the interaction among agents in the network, rendering it incapable of handling large networks. Although OIM is capable of finding the influential nodes in the social network in an optimized way and targeting them for advertising, in large networks, performing the matrix operations required to find the optimized solution is intractable.To overcome this limitation, we then propose a hierarchical influence maximization (HIM) algorithm for scaling influence maximization to larger networks. In the hierarchical method the network is partitioned into multiple smaller networks that can be solved exactly with optimization techniques, assuming a generalized IC model, to identify a candidate set of seed nodes. The candidate nodes are used to create a distance-preserving abstract version of the network that maintains an aggregate influence model between partitions. The budget limitation for the advertising dictates the algorithm's stopping point. On synthetic datasets, we show that our method comes close to the optimal node selection, at substantially lower runtime costs.We present results from applying the HIM algorithm to real-world datasets collected from social media sites with large numbers of users (Epinions, SlashDot, and WikiVote) and compare it with two benchmarks, PMIA and DegreeDiscount, to examine the scalability and performance.Our experimental results reveal that HIM scales to larger networks but is outperformed by degree-based algorithms in highly-connected networks. However, HIM performs well in modular networks where the communities are clearly separable with small number of cross-community edges. This finding suggests that for practical applications it is useful to account for network properties when selecting an influence maximization method.
Show less - Date Issued
- 2014
- Identifier
- CFE0005205, ucf:50647
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005205