View All Items
- Title
- REACTION RATES FOR THE DEHALOGENATION OF TRICHLOROETHYLENE USING VARIOUS TYPES OF ZERO-VALENT IRON.
- Creator
-
Stewart, Neil, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Remediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals,...
Show moreRemediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals, such as iron, to effectively reductively dechlorinate DNAPLs has been employed as the reactive material in these PRBWs (Gillham et al., 1993). However, limited work has been conducted to compare the kinetics of TCE degradation related to various manufacturing sources of iron and the pretreatment the iron receives prior to subsurface installation. Determination of iron reactivity through kinetic studies makes it possible to compare different types of iron and the effects that pretreatment has on reactivity. This research utilized rate studies, scanning electron microscopy, and BET surface area analysis for iron particles that were obtained from several sources. Peerless Metal Powders and Abrasive, Inc., Connelly-GPM, Inc., and Alfa Aesar Inc., produced the iron particles using various manufacturing techniques, and nanoscale iron was synthesized in our laboratory. By utilizing zero-headspace batch vial experiments and gas chromatography, changes in TCE concentration were determined. The data obtained produced linear first order rate plots from which dehalogenation rate constants were obtained. The rate constants were normalized by iron mass, solution volume, and surface area. The pretreatment techniques employed in this study, including ultrasonication and acid washing, demonstrated a beneficial effect by removing oxide precipitates from the iron surface, thus increasing the reactivity of the iron. Mass loading studies revealed how physical factors, associated with the experimental setup, could influence reaction rates. Surface area studies confirmed that the smaller iron particles, such as the nanoscale iron, have a greater surface area per unit mass. The large mass and volume normalized rate constant, kMV, obtained for the nanoscale iron was a result of this high surface area. However, the calculated surface area normalized rate constant, kSA, for the nanoscale iron was significantly lower than those for the granular iron samples tested. It was concluded that differences in surface area normalized rate constants, between different iron particle types, could be attributed to inherent characteristics of the iron, such as composition and crystal structure.
Show less - Date Issued
- 2005
- Identifier
- CFE0000797, ucf:46583
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000797
- Title
- Interdiffusion reaction between uranium-zirconium and iron.
- Creator
-
Park, Young Joo, Sohn, Yongho, Coffey, Kevin, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
U-Zr metallic fuels cladded in Fe-alloys are being considered for application in an advanced Sodium-Cooled Fast Reactor (SFR) that can recycle the U-Zr fuels and minimize the long-lived actinide waste. To understand the complex fuel-cladding chemical interaction of the U-Zr metallic fuel with Fe-alloys, a systematic multicomponent diffusion study was carried out using solid-to-solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were assembled and annealed at temperatures,...
Show moreU-Zr metallic fuels cladded in Fe-alloys are being considered for application in an advanced Sodium-Cooled Fast Reactor (SFR) that can recycle the U-Zr fuels and minimize the long-lived actinide waste. To understand the complex fuel-cladding chemical interaction of the U-Zr metallic fuel with Fe-alloys, a systematic multicomponent diffusion study was carried out using solid-to-solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were assembled and annealed at temperatures, 630, 650 and 680(&)deg;C for 96 hours. Development of microstructure, phase constituents, and compositions developed during the thermal anneals were examined by scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy. A complex microstructure consisting of several layers that include phases such as U6Fe, UFe2, ZrFe2, ?-U, ?-U, Zr-precipitates, ?, ?, and ? was observed. Multi-phase layers were grouped based on phase constituents and microstructure, and the layer thicknesses were measured to calculate the growth constant and activation energy. The local average compositions through the interaction layer were systematically determined, and employed to construct semi-quantitative diffusion paths on isothermal U-Zr-Fe ternary phase diagrams at respective temperatures. The diffusion paths were examined to qualitatively estimate the diffusional behavior of individual components and their interactions. Furthermore, selected area diffraction analyses were carried out to determine, for the first time, the exact crystal structure and composition of the ?, ? and ?-phases. The ?, ? and ?-phases were identified as Pnma(62) Fe(Zr,U), I4/mcm(140) Fe(Zr,U)2, and I4/mcm(140) U3(Zr,Fe), respectively.
Show less - Date Issued
- 2013
- Identifier
- CFE0004908, ucf:49616
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004908
- Title
- Evaluation of Iron and Manganese Control for a Volcanic Surface Water Supply Treated with Conventional Coagulation, Sedimentation and Filtration Processes.
- Creator
-
Hall, Christine, Duranceau, Steven, Lee, Woo Hyoung, Randall, Andrew, University of Central Florida
- Abstract / Description
-
A research project assessing the effectiveness of potassium permanganate (KMnO4) for the treatment of iron (Fe) and manganese (Mn) has been conducted by the University of Central Florida (UCF) on behalf of the United States Navy with regards to the water supply on the island of Guam, located in the Marianas Islands. The study consisted of three basic investigative components: one that examined the use of potassium permanganate for iron and manganese control for Fena Lake, a second that...
Show moreA research project assessing the effectiveness of potassium permanganate (KMnO4) for the treatment of iron (Fe) and manganese (Mn) has been conducted by the University of Central Florida (UCF) on behalf of the United States Navy with regards to the water supply on the island of Guam, located in the Marianas Islands. The study consisted of three basic investigative components: one that examined the use of potassium permanganate for iron and manganese control for Fena Lake, a second that examined the existing unit operations that comprised the Navy's water treatment plant (NWTP), and a third that examined iron and manganese field sampling analytical procedures.In the first and primary component of the research, surface water from Fena Lake located within the Naval Magazine in proximity of Santa Rita, Guam was collected at several different lake depths and initially analyzed for iron and manganese using inductively coupled plasma. Subsequent aliquots of Fena Lake collected at the various water depths were transferred to jars then dosed with varying amounts of potassium permanganate after which iron and manganese content was determined. The jars were covered to simulate actual lake to plant transfer conditions experienced at the Navy's on-island facilities. A portion of the jars was dosed with potassium permanganate prior to metals analysis in order to allow for comparisons of baseline conditions. To represent conventional treatment processes, the water samples were then coagulated with aluminum sulfate prior to filtration to remove the oxidized manganese and iron formed from the addition of the potassium permanganate. Coagulated aliquots were filtered and collected to evaluate residual dissolved iron and manganese content. Based on the results of the jar tests it was determined that manganese was reduced by 95% or greater and that iron was completely removed to below the analytical detection limit (0.001 mg/L). It was determined that the potassium permanganate dose required for oxidation of iron was 0.94 mg/mg iron and for manganese was 1.92 mg/mg manganese. It was also observed that when the jars containing aliquots that turned brown in color after potassium permanganate dosing meant that iron and manganese were present and were being oxidized; however, water samples that turned pink were found to be over-dosed with potassium permanganate. The pink water is an undesired characteristic and could result in customer complaints when distributed to the system.The second component of research focused on NWTP existing conditions. Water samples were collected after each key unit operation within the NWTP and analyzed for iron and manganese. This was to determine if pre-chlorination at Fena Lake was effective at removing iron and manganese that could be present in the source water. Analysis was conducted where pre-chlorination at Fena Lake was practiced as well as when no pretreatment was practiced prior to the NWTP. It was determined that the iron and manganese were not detected downstream of the coagulation unit operation within the NWTP even when pre-chlorination was not practiced. Consequently pre-chlorination of Fena Lake source water was not required for controlling iron and manganese under the conditions experienced in this study.A third study was also implemented to confirm that 0.1-micron filters are appropriate for use in preparing samples for analytical determination of iron and manganese analysis at various points within the NWTP. The filtration step is important to delineate between dissolved and suspended iron and manganese forms. Standard Methods 3120B recommends the use of 0.45-micron filters, although based on literature it has been shown that oxidized manganese particles may be smaller than a 0.45-micron pore size. Unless a coagulant was used, the oxidized manganese may not be fully removed via the 0.45-micron filter. To verify the effectiveness of using a 0.1-micron filter, a jar test was conducted to compare the use of a 0.1-micron filter, a 0.45-micron filter, and a 0.45-micron filter after the sample has been coagulated. It was found that the use of a 0.1-micron filter was superior to the use of 0.45-micron filters even with coagulant addition when directly comparing between dissolved and suspended iron and manganese forms. It is recommended that 0.1-microns be utilized in lieu of historically recommended 0.45-micron filters for sample preparation procedures.
Show less - Date Issued
- 2014
- Identifier
- CFE0005180, ucf:50655
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005180
- Title
- THE EFFECTS OF SITE-DIRECTED MUTAGENESIS ON HEMERYTHRIN-LIKE PROTEIN RV2633C.
- Creator
-
Rosch, Kelly M, Self, William, University of Central Florida
- Abstract / Description
-
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project...
Show moreMycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project is to identify specific residues outside of the HHE domain that contribute to the protein's iron-binding ability and/or catalase activity, and to determine whether residues on the C terminus are required for dimerization. Conserved residues D37, E42, and E95 were selected due to their proximity in the amino acid sequence to the HHE domain. Each residue was mutated to alanine using site-directed mutagenesis and the mutations were confirmed using Sanger sequencing. The E95A mutant and the C-terminal truncation mutant were expressed in Escherichia coli using the T7 expression system and purified using affinity chromatography. While wild-type Rv2633c eluted as a soluble protein, the C-terminal truncation mutant was not soluble, indicating that the C terminus may be required for Rv2633c folding. The E95A mutant eluted as a soluble protein, but may have lower iron content than wild-type Rv2633c, indicating that this glutamic acid residue could contribute to iron-binding, despite being outside the HHE domain.
Show less - Date Issued
- 2018
- Identifier
- CFH2000438, ucf:45794
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000438
- Title
- BLOCK COPOLYMER STABILIZED SELF-ASSEMBLED MAGNETIC NANOPARTICLES.
- Creator
-
ZHANG, LI, BELFIELD, KEVIN, University of Central Florida
- Abstract / Description
-
Magnetic materials are currently being developed in the areas of pharmacology and medicinal chemistry for use in applications such as drug delivery and magnetic resonance imaging. Magnetic fluids are being used in audio equipment and hard disk drives. Their suspension in a particular fluid is promoted by the adsorption or reaction of steric or electrostatic stabilizers, which are appropriate for the particular medium. Critical to the success of these magnetic fluids is the development of the...
Show moreMagnetic materials are currently being developed in the areas of pharmacology and medicinal chemistry for use in applications such as drug delivery and magnetic resonance imaging. Magnetic fluids are being used in audio equipment and hard disk drives. Their suspension in a particular fluid is promoted by the adsorption or reaction of steric or electrostatic stabilizers, which are appropriate for the particular medium. Critical to the success of these magnetic fluids is the development of the steric stabilizers, which must prevent the coagulation of the metal particles. Polymeric materials are one of the most suitable nonmagnetic media to disperse the magnetic nanoparticles, forming polymeric nanocomposites in ferrofluids. We have developed strategies in molecular nanoscience to design polymeric systems for stabilization of magnetic nanoparticles. Ring opening metathesis polymerization (ROMP) was used to prepare a series of novel, well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene 2-carboxylic acid 2-cyanoethyl ester and bicyclo[2.2.1]hept-2-ene, consisting of both anchoring and steric stabilizing blocks. Both ester and cyano groups were incorporated into the polymers to chelate and stabilize the iron oxide magnetic nanoparticles. These polynorbornene-based copolymers were characterized by GPC, along with 1H NMR, FTIR, DSC, and TGA. Using diblock copolymers as stabilizers, nanostructured maghemite (ã-Fe2O3) magnetic ferrofluids were prepared in toluene or cyclohexanone via thermal decomposition of Fe(CO)5 and then the oxidation of iron nanoparticles. Transmission electron microscopic (TEM) images showed a highly crystalline structure of the ã-Fe2O3 nanoparticles, with average particle size varying from 5 to 7 nm. Polymer films containing iron oxide nanoclusters were also prepared from the diblock copolymers. For comparison, a commercial triblock copolymer (BASF PluronicR F127) surfactant was used to prepare stabilized ferrofluids. In addition to ã-Fe2O3 nanoparticles, other types of magnetic nanoparticles, such as FePt, were investigated using this triblock copolymer as a stabilizer. The results indicated that the norbornene diblock copolymers could also be used for the preparation of FePt stabilized magnetic ferrofluids in the future research work.
Show less - Date Issued
- 2004
- Identifier
- CFE0000230, ucf:46272
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000230
- Title
- USING ELECTROCHEMICAL MONITORING TO PREDICT METAL RELEASE IN DRINKING WATER DISTRIBUTION SYSTEMS.
- Creator
-
Vaidya, Rajendra, Taylor, James, University of Central Florida
- Abstract / Description
-
ABSTRACT Corrosion of distribution system piping and home plumbing materials is a major concern in the water community. Iron release adverse affects aesthetic water quality and the release of copper and lead is regulated by the Lead and Copper rule (LCR) and can adversely affect consumer health. Corrosion control is typically done by pH regulation and/or addition of corrosion inhibitors. Monitoring of corrosion control is typically done after the fact by monitoring metal release, functional...
Show moreABSTRACT Corrosion of distribution system piping and home plumbing materials is a major concern in the water community. Iron release adverse affects aesthetic water quality and the release of copper and lead is regulated by the Lead and Copper rule (LCR) and can adversely affect consumer health. Corrosion control is typically done by pH regulation and/or addition of corrosion inhibitors. Monitoring of corrosion control is typically done after the fact by monitoring metal release, functional group concentration of the selected chemical species or water quality. Hence, the associated laboratory analyses create a significant delay prior to the assessment of corrosion in drinking water systems. As corrosion in drinking water systems is fundamentally an electrochemical process, measurement of the electrical phenomena associated with corrosion can be use for real-time corrosion monitoring. This dissertation focuses on using parameters associated with electrochemical corrosion monitoring (EN) measurements in a field facility to predict and control the release of Iron, Copper and Lead in finished waters produced from ground, surface and saline sources with and without usage of corrosion inhibitors. EN data has not been used previously to correlate water quality and metal release; hence the use of EN data for corrosion control in drinking water systems has not been developed or demonstrated. Data was collected over a one year period from a large field facility using finished waters that are distributed to each of the fourteen pilot distribution systems (PDSs), corrosion loops and Nadles each. The PDSs have been built from aged pipes taken from existing distribution systems and contain links of PVC, lined cast Iron, unlined cast Iron and galvanized Steel pipe. The effluent for each PDS was split in two parts. One was delivered to the corrosion loops which are made from coiled copper pipe with lead-tin coupon inserted inside each loop and the other was delivered to the Nadles which housed the EN probes with electrodes for Fe or Cu or Pb-Sn. Finished water quality was monitored in and out of each PDS and total and dissolved Copper and Lead were monitored out of each corrosion loop. Photographs, scanning electron microscope (SEM) micrographs and energy disruptive x-ray spectroscopy (EDAX) conducted on all EN electrodes. EN electrodes showed dark brown to blackish voluminous scales for Fe, and EDAX revealed occurrence of two scales in distinct areas for all Fe electrodes; one comprised of porous, spongy looking structures and scales with more Fe content where the other had denser and more compact scales richer in Ca and P or Si. Cu electrodes had an orange to dark brown thin scale with blue green spots. Small pits were consistently observed mostly in the centre of such blue green spots which were identified as copper carbonates. The Pb electrodes visually showed a thin shiny transparent film with a surface very similar to the unexposed electrodes. Numerous pits were visually for pH controls and not seen for inhibitors; but SEM revealed that all electrodes had pits but the inhibitors reduced number and size of pits compared with pH controls. Thin hexagonal hydrocerussite plates were observed to occur in distinct growth areas and the presence of P or Si inhibitor seemed to increase the occurrence of hydrocerussite. Both Fe & Pb release were mostly in the particulate form while Cu release was mostly in the dissolved form. Total and dissolved Fe, Cu and Pb release models using EN parameters were developed by nonlinear regression. Fe release increased with localized corrosion (PF) and the EN model predicts that Fe release can be effectively controlled to the same degree by pH elevation or inhibitors. Cu release increased with general corrosion (LPRCR) and was also influenced by localized corrosion (ECNCR). However general corrosion was more significant for copper release which was mostly in the dissolved form. Pb release was depended on both general corrosion (LPRCR & HMCR) and localized corrosion (PF). The EN models predict that both Cu and Pb release is highest for pH control and all inhibitors reduced Cu and Pb release, which is consistent with the data. Inhibitors ranked by increasing effectiveness for reducing both Cu and Pb release are pH elevation, Si, ZOP, OP and BOP. EN monitoring is faster and less labor intensive than water quality monitoring and represents a significant advance for controlling metal release in drinking water distribution systems. The EN models were found to be comparable to water quality models developed from this study for metal release, and since EN is a real-time technique it offers a tremendous advantage over traditional water quality sampling techniques. Remote access of EN monitoring equipment is possible and the system requires little to no maintenance with the exception of a power supply or battery. The rapid turn around of corrosion rates from EN can be used to estimate metal release in drinking water proactively and mitigating measures can be implemented before the full adverse impacts are realized.
Show less - Date Issued
- 2007
- Identifier
- CFE0001953, ucf:47430
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001953
- Title
- EFFECTS OF SOURCE WATER BLENDING FOLLOWING TREATMENT WITH SODIUM SILICATE AS A CORROSION INHIBITOR ON METAL RELEASE WITHIN A WATER DISTRIBUTION SYSTEM.
- Creator
-
Lintereur, Phillip, Duranceau, Steven, University of Central Florida
- Abstract / Description
-
A study was conducted to investigate and quantify the effects of corrosion inhibitors on metal release within a pilot distribution system while varying the source water. The pilot distribution system consisted of pre-existing facilities from Taylor et al (2005). Iron, copper, and lead release data were collected during four separate phases of operation. Each phase was characterized by the particular blend ratios used during the study. A blended source water represented a water that had been...
Show moreA study was conducted to investigate and quantify the effects of corrosion inhibitors on metal release within a pilot distribution system while varying the source water. The pilot distribution system consisted of pre-existing facilities from Taylor et al (2005). Iron, copper, and lead release data were collected during four separate phases of operation. Each phase was characterized by the particular blend ratios used during the study. A blended source water represented a water that had been derived from a consistent proportion of three different source waters. These source waters included (1) surface water treated through enhanced coagulation/sedimentation/filtration, (2) conventionally treated groundwater, and (3) finished surface water treated using reverse osmosis membranes. The corrosion inhibitors used during the study were blended orthophosphate (BOP), orthophosphate (OP), zinc orthophosphate (ZOP), and sodium silicate (Si). This document was intended to cite the findings from the study associated with corrosion treatment using various doses of sodium silicate. The doses were maintained to 3, 6, and 12 mg/L as SiO2 above the blend-dependent background silica concentration. Sources of iron release within the pilot distribution system consisted of, in the following order of entry, (1) lined cast iron, (2) un-lined cast iron, and (3) galvanized steel. Iron release data from these materials was not collected for each individual iron source. Instead, iron release data represented the measurement of iron upon exposure to the pilot distribution system in general. There was little evidence to suggest that iron release was affected by sodium silicate. Statistical modeling of iron release suggested that iron release could be described by the water quality parameters of alkalinity, chlorides, and pH. The R2 statistic implied that the model could account for only 36% of the total variation within the iron release data set (i.e. R2 = 0.36). The model implies that increases in alkalinity and pH would be expected to decrease iron release on average, while an increase in chlorides would increase iron release. The surface composition of cast iron and galvanized steel coupons were analyzed using X-ray photoelectron spectroscopy (XPS). The surface analysis located binding energies consistent with Fe2O3, Fe3O4, and FeOOH for both cast iron and galvanized steel. Elemental scans detected the presence of silicon as amorphous silica; however, there was no significant difference between scans of coupons treated with sodium silicate and coupons simply exposed to the blended source water. The predominant form of zinc found on the galvanized steel coupons was ZnO. Thermodynamic modeling of the galvanized steel system suggested that zinc release was more appropriately described by Zn5(CO3)2(OH)6. The analysis of the copper release data set suggested that treatment with sodium silicate decreased copper release during the study. On average the low, medium, and high doses decreased copper release, when compared to the original blend source water prior to sodium silicate addition, by approximately 20%, 30%, and 50%, respectively. Statistical modeling found that alkalinity, chlorides, pH, and sodium silicate dose were significant variables (R2 = 0.68). The coefficients of the model implied that increases in pH and sodium silicate dose decreased copper release, while increases in alkalinity and chlorides increased copper release. XPS for copper coupons suggested that the scale composition consisted of Cu2O, CuO, and Cu(OH)2 for both the coupons treated with sodium silicate and those exposed to the blended source water. Analysis of the silicon elemental scan detected amorphous silica on 3/5 copper coupons exposed to sodium silicate. Silicon was not detected on any of the 8 control coupons. This suggested that sodium silicate inhibitor varied the surface composition of the copper scale. The XPS results seemed to be validated by the visual differences of the copper coupons exposed to sodium silicate. Copper coupons treated with sodium silicate developed a blue-green scale, while control coupons were reddish-brown. Thermodynamic modeling was unsuccessful in identifying a controlling solid that consisted of a silicate-based cupric solid. Lead release was generally decreased when treated with sodium silicate. Many of the observations were recorded below the detection limit (1 ppb as Pb) of the instrument used to measure the lead concentration of the samples during the study. The frequency of observations below the detection limit tended to increase as the dose of sodium silicate increased. An accurate quantification of the effect of sodium silicate was complicated by the observations recorded below detection limit. If the lead concentration of a sample was below detection limit, then the observation was recorded as 1 ppb. Statistical modeling suggested that temperature, alkalinity, chlorides, pH, and sodium silicate dose were important variables associated with lead release (R2 = 0.60). The exponents of the non-linear model implied that an increase in temperature, alkalinity, and chlorides increased lead release, while an increase in pH and sodium silicate dose were associated with a decrease in lead release. XPS surface characterization of lead coupons indicated the presence of PbO, PbO2, PbCO3, and Pb3(OH)2(CO3)2. XPS also found evidence of silicate scale formation. Thermodynamic modeling did not support the possibility of a silicate-based lead controlling solid. A solubility model assuming Pb3(OH)2(CO3)2 as the controlling solid was used to evaluate lead release data from samples in which lead coupons were incubated for long stagnation times. This thermodynamic model seemed to similarly describe the lead release of samples treated with sodium silicate and samples exposed to the blended source water. The pH of each sample was similar, thus sodium silicate, rather than the corresponding increase in pH, would appear to be responsible if a difference had been observed. During the overall study, the effects of BOP, OP, ZOP, and Si corrosion inhibitors were described by empirical models. Statistically, the model represented the expected value, or mean average, function. If these models are to be used to predict a dose for copper release, then the relationship between the expected value function and the 90th percentile must be approximated. The USEPA Lead and Copper Rule (LCR) regulates total copper release at an action level of 1.3 mg/L. This action level represents a 90th percentile rather than a mean average. Evaluation of the complete copper release data set suggested that the standard deviation was proportional to the mean average of a particular treatment. This relationship was estimated using a linear model. It was found that most of the copper data sub-sets (represented by a given phase, inhibitor, and dose) could be described by a normal distribution. The information obtained from the standard deviation analysis and the normality assumption validated the use of a z-score to relate the empirical models to the estimated 90th percentile observations. Since an analysis of the normality and variance (essentially contains the same information as the standard deviation) are required to assess the assumptions associated with an ANOVA, an ANOVA was performed to directly compare the effects of the inhibitors and corresponding doses. The findings suggested that phosphate-based inhibitors were consistently more effective than sodium silicate when comparing the same treatment levels (i.e. doses). Among the phosphate-based inhibitors, the effectiveness of each respective treatment level was inconsistent (i.e. there was no clear indication that any one phosphate-based inhibitor was more effective than the other). As the doses increased for each inhibitor, the results generally suggested that there was a corresponding tendency for copper release to decrease.
Show less - Date Issued
- 2008
- Identifier
- CFE0002383, ucf:47737
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002383
- Title
- IN-SITU GAS PHASE CATALYTIC PROPERTIES OF METAL NANOPARTICLES.
- Creator
-
Ono, Luis, Roldan Cuenya, Beatriz, University of Central Florida
- Abstract / Description
-
Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research,...
Show moreRecent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore the basic processes taking place in NP catalyzed chemical reactions by systematically changing their size, shape, oxide support, and composition, one factor at a time. Low temperature oxidation of CO over gold NPs supported on different metal oxides and carbides (SiO2, TiO2, TiC, etc.) has been used as a model reaction. The fabrication of nanocatalysts with a narrow size and shape distribution is essential for the microscopic understanding of reaction kinetics on complex catalyst systems ("real-world" systems). Our NP synthesis tools are based on self-assembly techniques such as diblock-copolymer encapsulation and nanosphere lithography. The morphological, electronic and chemical properties of these nanocatalysts have been investigated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Chapter 1 describes briefly the basic principles of the instrumentation used within this experimental dissertation. Since most of the state-of-art surface science characterization tools provide ensemble-averaged information, catalyst samples with well defined morphology and structure must be available to be able to extract meaningful information on how size and shape affect the physical and chemical properties of these structures. In chapter 2, the inverse-micelle encapsulation and nanosphere lithography methods used in this dissertation for synthesizing uniformly arranged and narrow size- and shape-selected spherical and triangular NPs are described. Chapter 3 describes morphological changes on individual Au NPs supported on SiO2 as function of the annealing temperature and gaseous environment. In addition, NP mobility is monitored. Chapter 4 explores size-effects on the electronic and catalytic properties of size-selected Au NPs supported on a transition metal carbide, TiC. The effect of interparticle interactions on the reactivity and stability (catalyst lifetime) of Au NPs deposited on TiC is discussed in chapter 5. Size and support effects on the formation and thermal stability of Au2O3, PtO and PtO2 on Au and Pt NPs supported on SiO2, TiO2 and ZrO2 is investigated in chapter 6. Emphasis is given to gaining insight into the role of the NP/support interface and that played by oxygen vacancies on the stability of the above metal oxides. Chapter 7 reports on the formation, thermal stability, and vibrational properties of mono- and bimetallic AuxFe1-x (x = 1, 0.8, 0.5, 0.2, 0) NPs supported on TiO2(110). At the end of the thesis, a brief summary describes the main highlights of this 5-year research program.
Show less - Date Issued
- 2009
- Identifier
- CFE0002940, ucf:47962
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002940
- Title
- Evaluating the Integration of Chlorine Dioxide into a Coagulation, Sedimentation, and Filtration Process Treating Surface Water.
- Creator
-
Coleman, Martin, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Methods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first...
Show moreMethods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first component, jar tests were conducted at various pH and aluminum sulfate (alum) dosages to model current and potential treatment conditions during the CSF process at a WTP. Isopleths were developed to examine the removal efficiencies of turbidity and natural organic matter (NOM). NOM is a DBP precursor material and was represented by non-purgeable dissolved organic carbon (DOC) throughout the research. Isopleths indicated that at pH 6.2 and a corresponding alum dosage of 20 mg/L (control condition), turbidity and DOC were reduced by 90 and 35 percent, respectively. However, at pH 5.5 and 30 mg/L alum dosage, turbidity removal decreased to 80 percent whereas, DOC removal improved to 50 percent. Jar testing was conducted to evaluate differences in the use of KMnO4 and ClO2 as a pretreatment chemical to observe the reduction of DBP precursor material (i.e., NOM), dissolved iron, and dissolved manganese. Addition of ClO2 was able to reduce total trihalomethanes and haloacetic acid formation potentials (168-hours) up to 40 percent and 15 percent, respectively, and was dependent on chlorine dioxide generation method, dosage, and raw water characteristics. Chlorine dioxide also was shown to remove iron and manganese at levels greater than 99 percent.
Show less - Date Issued
- 2018
- Identifier
- CFE0007396, ucf:52078
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007396
- Title
- Thermo- and Zero-Valent Iron-Activated Persulfate Oxidation of 3,5,6-Trichloro-2-pyridinol in an Aquatic System.
- Creator
-
Mogharbel, Roaa, Yestrebsky, Cherie, Beazley, Melanie, Zou, Shengli, Legron-Rodriguez, Tamra, Randall, Andrew, University of Central Florida
- Abstract / Description
-
The compound 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of the broad-spectrumorganophosphorous insecticide chlorpyrifos, is both more persistent and more water soluble thanits parent compound. This difference, which allows TCPy to more readily leach into surface waterand groundwater, has led to widespread contamination of TCPy in soils and aquatic environments.In this study, the degradation of TCPy by sulfate radicals was evaluated using zero valent ironactivatedpersulfate systems and...
Show moreThe compound 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of the broad-spectrumorganophosphorous insecticide chlorpyrifos, is both more persistent and more water soluble thanits parent compound. This difference, which allows TCPy to more readily leach into surface waterand groundwater, has led to widespread contamination of TCPy in soils and aquatic environments.In this study, the degradation of TCPy by sulfate radicals was evaluated using zero valent ironactivatedpersulfate systems and heat activated persulfate system in aqueous media. Responsesurface methodology coupled with Box-Behnken design was applied in these studies to evaluatethe effects of the independent variables on the mineralization of TCPy by both systems. In eachsystem, the interactions, coefficients, and residuals of these variables were statically evaluated byAnalysis of variance. Results indicate that both systems can effectively oxidized TCPy in water.While ZV/PS exhibited a high mineralization rate of TCPy up to 81.1%, TCPy was completelymineralized in heat activated PS system. The reaction kinetics of the degradation process wereexamined as functions of experimental parameters in each system and the result revealed that theoxidation of TCPy in both systems followed a pseudo-first-order model under all conditions tested.Radical scavenging tests indicated that sulfate radicals are the predominated species in zero valentiron activated persulfate system, whereas hydroxyl radicals are the predominated species in heatactivated persulfate system. The presence of chloride, sulfate and phosphate anions showednegligible effects on TCPy oxidation by heat activated PS system. The degradation pathways ofTCPy were proposed based on the products identified by GC-MS. Calculated ?G values usingdensity functional theory agreed with the proposed experimental pathway.
Show less - Date Issued
- 2018
- Identifier
- CFE0007762, ucf:52386
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007762
- Title
- Effects of Allotropic Transformations on Interdiffusion Behavior in Binary Systems.
- Creator
-
Ewh, Ashley, Sohn, Yongho, Suryanarayana, Challapalli, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Diffusion plays a significant role in most materials systems by controlling microstructural development. Consequently, the overall properties of a material can be largely dependent upon diffusion. This study investigated the interdiffusion behavior of three binary systems, namely, Mo-Zr, Fe-Mo, and Fe-Zr. The main interest in these particular metals is for application in nuclear fuel assemblies. Nuclear fuel plates generally consist of two main components which are the fuel and the cladding....
Show moreDiffusion plays a significant role in most materials systems by controlling microstructural development. Consequently, the overall properties of a material can be largely dependent upon diffusion. This study investigated the interdiffusion behavior of three binary systems, namely, Mo-Zr, Fe-Mo, and Fe-Zr. The main interest in these particular metals is for application in nuclear fuel assemblies. Nuclear fuel plates generally consist of two main components which are the fuel and the cladding. Due to diffusional interactions that can occur between these two components, a third is sometimes added between the fuel and cladding to serve as a diffusion barrier layer. Fe, Mo, and Zr can act as either cladding or barrier layer constituents and both Mo and Zr also serve as alloying additions in uranium based metallic fuels. Therefore, a fundamental understanding of the diffusional interactions in these systems is critical in predicting the performance and lifetime of these fuels. In order to study this diffusion behavior, a series of solid-to-solid diffusion couples were assembled between Fe, Mo, and Zr. These couples were then diffusion annealed isothermally for various predetermined times over a range of temperatures, including some both above and below the allotropic transformation temperatures for Fe and Zr. Following the diffusion anneal, the couples were water quenched, cross-sectioned, and prepared for microstructural and compositional characterization. A combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron probe microanalysis (EPMA) were used to obtain micrographs showing the microstructure and to collect compositional data for identifying intermediate phases and determining concentration profiles across the interdiffusion zone.Based on this characterization, the phases that developed in the diffusion zones were identified. In the Mo-Zr system, a large Zr solid solution layer developed in the couples annealed at and above 850(&)deg;C and a thin (~1-2 ?m) layer of Mo2Zr formed in all couples. Growth constants and concentration dependent interdiffusion coefficients were calculated for the Mo2Zr and Zr solid solution phases, respectively. In the Fe-Mo system, both the ?-Fe2Mo and ?-Fe7Mo6 phases were observed in couples annealed at 900(&)deg;C and below while ?-Fe7Mo6 and ?-Fe solid solution layers were observed in couples annealed above 900(&)deg;C. The relevant growth constants and activation energies for growth were calculated. In the Fe-Zr system, the couple annealed at 750(&)deg;C developed an FeZr2 and an FeZr3 layer while the couple annealed at 850(&)deg;C developed an Fe2Zr and Fe23Zr6 layer in the diffusion zone. The results of this analysis were then compared to available information from literature and the corresponding binary phase diagrams for each system. The results are discussed with respect to the effects of the allotropic transformations of Fe and Zr on the interdiffusion behavior in these systems.
Show less - Date Issued
- 2012
- Identifier
- CFE0004374, ucf:49422
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004374
- Title
- Chemistry and dissipation at mineral surfaces in the space environment.
- Creator
-
Tucker, William, Schelling, Patrick, Britt, Daniel, Kara, Abdelkader, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation,...
Show moreThe composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the formation of complex organic species. Next, results obtained using molecular-dynamics simulations demonstrate that uncoordinated surface atoms in metallic nanoparticles result in plastic deformation, strong dissipation and adhesion during collisions. This can be contrasted with previous simulations which demonstrate significantly weaker dissipation when surface atoms are passivated. Calculations of critical sticking velocities demonstrate that simple coarse- grain models are insufficient for predicting the adhesive behavior of sub-micron sized grains. Next, results are presented describing a computational study illuminating the role of surface chemistry on adhesion and dissipation for iron nanoparticle collisions, which in the case of free radical adsorbates may also contribute to the creation of more complex species. Lastly, to further elucidate dissipation, the direct coupling of harmonic vibrational modes in the dissipation process is established. The results demonstrate broad participation of low and high-frequency modes during a collision during a timescale less than time required for particles to rebound. Hence, our results demonstrate extremely strong likelihood of adhesion during collisions. This approach provides a way to use density-functional theory calculations to directly compute dissipative couplings at mineral interfaces.
Show less - Date Issued
- 2019
- Identifier
- CFE0007545, ucf:52592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007545
- Title
- Assessment of molecular interactions via magnetic relaxation: a quest for inhibitors of the anthrax toxin.
- Creator
-
Santiesteban, Oscar, Perez Figueroa, Jesus, Liao, Yi, Yestrebsky, Cherie, Hampton, Michael, Lambert, Stephen, University of Central Florida
- Abstract / Description
-
Anthrax is severe disease caused by the gram-positive Bacillus anthracis that can affect humans with deadly consequences. The disease propagates via the release of bacterial spores that can be naturally found in animals or can be weaponized and intentionally released into the atmosphere in a terrorist attack. Once inhaled, the spores become activated and the anthrax bacterium starts to reproduce and damage healthy macrophages by the release of the anthrax toxin. The anthrax toxin is composed...
Show moreAnthrax is severe disease caused by the gram-positive Bacillus anthracis that can affect humans with deadly consequences. The disease propagates via the release of bacterial spores that can be naturally found in animals or can be weaponized and intentionally released into the atmosphere in a terrorist attack. Once inhaled, the spores become activated and the anthrax bacterium starts to reproduce and damage healthy macrophages by the release of the anthrax toxin. The anthrax toxin is composed of three virulent factors: (i) anthrax protective antigen (APA), (ii) anthrax lethal factor (ALF), and (iii) anthrax edema factor (AEF) that work in harmony to effectuate the lethality associated with the disease. Out of the two internalized factors, ALF has been identified to play a critical role in cell death. Studies in animals have shown that mice infected with an anthrax strain lacking ALF survive the infection whereas when ALF is present the survivability of the mice is eliminated. Although the current therapy for anthrax is antibiotic treatment, modern medicine faces some critical limitations when combating infections. Antibiotics have proven very efficient in eliminating the bacterial infection but they lack the ability to destroy or inhibit the toxins released by the bacteria. This is a significant problem since ALF can remain active in the body for days after the infection is eliminated with no way of inhibiting its destructive effects. The use of inhibitors of ALF is an attractive method to treat the pathogenesis of anthrax infections. Over the last decade several inhibitors of the enzymatic activity of ALF have been identified. In order to identify inhibitors of ALF a variety of screening approaches such as library screenings, Mass Spectroscopy- based screenings and scaffold-based NMR screening have been used. Results from these screening have yielded mainly small molecules that can inhibit ALF in low micromolar to nanomolar concentrations. Yet, although valuable, these results have very little significance with regards to treating ALF in a real-life scenario since pharmaceutical companies are not willing to invest in further developing these inhibitors. Furthermore, the low incidence of inhalation anthrax, the lack of a market for an ALF inhibitor, and the expenses associated with the approval process of the FDA, have hindered the motivation of pharmaceutical companies to pursuit these kind of drugs. Therefore we have screened a small-molecule library of FDA approved drugs and common molecules in order to identify currently approved FDA drugs that can also inhibit ALF (Chapter III). The screening revealed that five molecules: sulindac, fusaric acid, naproxen, ketoprofen and ibuprofen bound to either ALF or APA with sulindac binding both. Additionally, we have developed a nanoparticle-based screening method that assesses molecular interactions by magnetic relaxation changes (Chapter II). Using this assay, we were able to accurately measure the dissociation constants of different interactions between several ligands and macromolecules. Moreover, we have used computational docking studies to predict the binding site of the identified molecules on the ALF or APA (Chapter IV). These studies predicted that two molecules sulindac and fusaric acid could be potential inhibitors of ALF since they bind at the enzymatic pocket. As a result, we tested the inhibitory potential of these molecules as well as that of the metabolic derivatives of sulindac (Chapter V). Results from these studies provided conclusive evidence that fusaric acid and sulindac were both strong inhibitors of ALF. Furthermore, the metabolic derivatives of sulindac, sulindac sulfide and sulindac sulfone also inhibited ALF. Overall, taking together these results we have discovered the alternate use of a currently used drug for the treatment of ALF pathogenesis.
Show less - Date Issued
- 2012
- Identifier
- CFE0004794, ucf:49745
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004794
- Title
- VERIFICATION OF PILOT-SCALE IRON RELEASE MODELS.
- Creator
-
Glatthorn, Stephen, Taylor, James, University of Central Florida
- Abstract / Description
-
A model for the prediction of color release from a pilot distribution system was created in 2003 by Imran. This model allows prediction of the release of color from aged cast iron and galvanized steel pipes as a function of water quality and hydraulic residence time. Color was used as a surrogate measurement for iron, which exhibited a strong linear correlation. An anomaly of this model was an absence of a term to account for pH, due to the influent water being well stabilized. A new study...
Show moreA model for the prediction of color release from a pilot distribution system was created in 2003 by Imran. This model allows prediction of the release of color from aged cast iron and galvanized steel pipes as a function of water quality and hydraulic residence time. Color was used as a surrogate measurement for iron, which exhibited a strong linear correlation. An anomaly of this model was an absence of a term to account for pH, due to the influent water being well stabilized. A new study was completed to evaluate the effectiveness of corrosion inhibitors against traditional adjustment. Two control lines were supplied with nearly same water qualities, one at pH close to pHs and one at pH well above pHs. The resulting data showed that effluent iron values were typically greater in the line with lower pH. The non-linear color model by Imran shows good agreement when the LSI was largely positive, but underpredicted the color release from the lower LSI line. A modification to the Larson Ratio proposed by Imran was able to give a reasonable agreement to the data at lower LSI values. LSI showed no definite relation to iron release, although a visual trend of higher LSI mitigating iron release can be seen. An iron flux model was also developed on the same pilot system by Mutoti. This model was based on a steady state mass balance of iron in a pipe. The constants for the model were empirically derived from experiments at different hydraulic conditions with a constant water quality. Experiments were assumed to reach steady state at 3 pipe volumes due to the near constant effluent turbidity achieved at this point. The model proposes that the iron flux under laminar flow conditions is constant, while the iron flux is linearly related to the Reynolds Number under turbulent conditions. This model incorporates the color release models developed by Imran to calculate flux values from different water qualities. A limited number of experiments were performed in the current study using desalinated and ground water sources at Reynolds Numbers ranging from 50 to 200. The results of these limited experiments showed that the iron flux for cast iron pipe was approximately one-half of the predicted values from Mutoti. This discrepancy may be caused by the more extensive flushing of the pipes performed on the current experiments which allowed attainment of a true steady state. Model changes were proposed to distinguish between near stagnant flow and the upper laminar region, with the upper laminar region showing a slight linear increase. Predictions using the galvanized flux model were not accurate due to an inferior color release model that was developed for galvanized pipes. The model exhibits a high dependence on sulfate concentrations, but concentrations of sulfates in the current experiments were low. This led to low predicted flux values when the actual data showed otherwise. A new galvanized model was developed from a combination of data from the original and current experiments. The predicted flux values using the new model showed great improvement over the old model, but the new model database was limited and the resulting model was not able to be independently tested.
Show less - Date Issued
- 2007
- Identifier
- CFE0001704, ucf:47332
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001704