Current Search: laser drilling (x)
View All Items
- Title
- ANNULAR BEAM SHAPING AND OPTICAL TREPANNING.
- Creator
-
Zeng, Danyong, Kar, Aravinda, University of Central Florida
- Abstract / Description
-
Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The...
Show morePercussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus. Two refractive arrangements have been presented in this study. Geometric optics, or ray optics, describes light propagation in terms of rays. However, it is a simplification of optics, and fails to account for many important optical effects such as diffraction and polarization. The diffractive behaviors of this optical trepanning system are stimulated and analyzed based on the Fresnel diffraction integral. Diffraction patterns of the resulting optical system are measured using a laser beam analyzer and compared with the theoretical results. Based on the theoretical and experimental results, the effects of experimental parameters are discussed. We have designed the annular beam shaping optical elements and the gas delivery system to construct an optical trepanning system. Laser drilling experiments are performed on the Stainless Steel-316 (SS 316) plate and the Inconel 718 (IN 718) plate. The geometry of the trepanning holes with different sizes is presented in this study.
Show less - Date Issued
- 2006
- Identifier
- CFE0001333, ucf:46965
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001333
- Title
- THERMAL MODELING AND LASER BEAM SHAPING FOR MICROVIAS DRILLING IN HIGH DENSITY PACKAGING.
- Creator
-
Zhang, Chong, Kar, Aravinda, University of Central Florida
- Abstract / Description
-
Laser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length...
Show moreLaser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length in the dielectric is also considered in this model. Therefore, the volumetric heating source criteria are applied in the model and the equations are solved analytically. The microvia drilling speed, temperature distribution in the dielectric and the thickness of the residue along the microvia walls and at the bottom of the microvia are studied for different laser irradiation conditions. An overheated metastable state of material is found to exist inside the workpiece. The overheating parameters are calculated for various laser drilling parameters and are used to predict the onset of thermal damage and to minimize the residue. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. A numerical thermal model is built to study the effect of self-defocusing for laser microvias drilling in multilayer electronic substrates with Nd:YAG and CO2 lasers.. The laser ablation thresholds was calculated with this model for the CO2 and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam in terms of residue and tapering angle. Laser beam shaping technique is used to produce the desired pitchfork beam. Laser beam shaping allows redistribution of laser power and phase across the cross-section of the beam for drilling perfectly cylindrical holes. An optical system, which is comprised of three lenses, is designed to transform a Gaussian beam into a pitchfork beam. The first two lenses are the phase elements through which a Gaussian laser beam is transformed into a super Gaussian beam. The ray tracing technique of geometrical optics is used to design these phase elements. The third lens is the transform element which produces a pitchfork profile at the focal plane due to the diffraction effect. A pinhole scanning power meter is used to measure the laser beam profile at the focal plane to verify the existence of the pitchfork beam. To account for diffraction effect, the above mentioned laser beam shaping system was optimized by iterative method using Adaptive Additive algorithm. Fresnel diffraction is used in the iterative calculation. The optimization was target to reduce the energy contained in the first order diffraction ring and to increase the depth of focus for the system. Two diffractive optical elements were designed. The result of the optimization was found dependent on the relation between the diameter of the designed beam shape and the airy disk diameter. If the diameter of the designed beam is larger, the optimization can generate better result. Drilling experiment is performed with a Q-switched CO2 laser at wavelength of 9.3 μm. Comparison among the drilling results from Gaussian beam, Bessel beam and Pitchfork beam shows that the pitchfork beam can produce microvias with less tapering angle and less residue at the bottom of the via. Laser parameters were evaluated experimentally to study their influences on the via quality. Laser drilling process was optimized based on the evaluation to give high quality of the via and high throughput rate. Nd:YAG laser at wavelengths of 1.06 μm and 532 nm were also used in this research to do microvias drilling. Experimental result is compared with the model. Experimental results show the formation of convex surfaces during laser irradiation. These surfaces eventually rupture and the material is removed explosively due to high internal pressures. Due to the short wavelength, high power, high efficiency and high repetition rate, these lasers exhibit large potentials for microvias drilling.
Show less - Date Issued
- 2008
- Identifier
- CFE0002363, ucf:47799
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002363