Current Search: laser stabilization (x)
View All Items
- Title
- LOW NOISE, HIGH REPETITION RATE SEMICONDUCTOR-BASED MODE-LOCKED LASERS FOR SIGNAL PROCESSING AND COHERENT COMMUNICATIONS.
- Creator
-
Quinlan, Franklyn, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be...
Show moreThis dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source used for mode-locking. These results lead to an ultralow timing jitter source, with 30 fs of timing jitter (1 Hz to 5 GHz, extrapolated). The focus of the work then shifts to generating a stabilized optical frequency comb. The first technique to generating the frequency comb is through optical injection. It is shown that not only can injection locking stabilize a mode-locked laser to the injection seed, but linewidth narrowing, timing jitter reduction and suppression of superfluous optical supermodes of a harmonically mode-locked laser also result. A scheme by which optical injection locking can be maintained long term is also proposed. Results on using an intracavity etalon for supermode suppression and optical frequency stabilization then follow. An etalon-based actively mode-locked laser is shown to have a timing jitter of only 20 fs (1Hz-5 GHz, extrapolated), optical linewidths below 10 kHz and optical frequency instabilities less than 400 kHz. By adding dispersion compensating fiber, the optical spectrum was broadened to 2 THz and 800 fs duration pulses were obtained. By using the etalon-based actively mode-locked laser as a basis, a completely self-contained frequency stabilized coupled optoelectronic oscillator was built and characterized. By simultaneously stabilizing the optical frequencies and the pulse repetition rate to the etalon, a 10 GHz comb source centered at 1550 nm was realized. This system maintains the high quality performance of the actively mode-locked laser while significantly reducing the size weight and power consumption of the system. This system also has the potential for outperforming the actively mode-locked laser by increasing the finesse and stability of the intracavity etalon. The final chapter of this dissertation outlines the future work on the etalon-based coupled optoelectronic oscillator, including the incorporation of a higher finesse, more stable etalon and active phase noise suppression of the RF signal. Two appendices give details on phase noise measurements that incorporate carrier suppression and the noise model for the coupled optoelectronic oscillator.
Show less - Date Issued
- 2008
- Identifier
- CFE0002252, ucf:47878
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002252
- Title
- INTEGRATED WAVELENGTH STABILIZATION OF BROAD AREA SEMICONDUCTOR LASERS USING A DUAL GRATING REFLECTOR.
- Creator
-
O'Daniel, Jason, Johnson, Eric, University of Central Florida
- Abstract / Description
-
A new fully integrated wavelength stabilization scheme based on grating-coupled surface-emitting lasers is explored. This wavelength stabilization scheme relies on two gratings. The first grating is fabricated on the p-side of the semiconductor laser in close proximity to the laser waveguide such that it couples light out of the guided mode of the waveguide into a propagating mode in the substrate; this grating is known as the grating coupler. The second grating is fabricated on the n-side of...
Show moreA new fully integrated wavelength stabilization scheme based on grating-coupled surface-emitting lasers is explored. This wavelength stabilization scheme relies on two gratings. The first grating is fabricated on the p-side of the semiconductor laser in close proximity to the laser waveguide such that it couples light out of the guided mode of the waveguide into a propagating mode in the substrate; this grating is known as the grating coupler. The second grating is fabricated on the n-side of the substrate such that for the stabilization wavelength, this second grating operates in the Littrow condition and is known as the feedback grating. Furthermore with the proper design of the two gratings, the feedback grating will operate under total internal reflection conditions allowing a near unity retro-reflection of the light of the stabilization wavelength. The grating coupler and feedback grating together comprise a dual grating reflector (DGR). The DGR wavelength stabilization scheme is investigated both theoretically by means of numerical modeling and experimentally by integration of a DGR as a wavelength selective reflector into a single quantum well semiconductor laser with a gain peak centered at 975nm. Numerical modeling predicts a peak reflection of approximately 70% including losses and a spectral width of 0.3nm. The integration of a DGR into a semiconductor laser proved both the efficacy of the scheme and also allowed us to experimentally determine the effective reflectivity to be on the order of 62%; the spectral width of light output from these devices is typically on the order of 0.2nm. Furthermore, these devices had light-current characteristic slopes greater than 0.84W/A operating under continuous wave conditions. The DGR was then modified to provide a reflection with two spectral peaks. A semiconductor device incorporating this dual wavelength DGR was fabricated and tested. These devices showed a peak optical power of in excess of 5.5W and a light-current characteristic slope of 0.86W/A in quasi continuous wave operation; these devices also exhibit a large operating current range in which both wavelengths have comparable output powers. Another modified DGR design was investigated for the purpose of providing an even narrower spectral reflection. Devices incorporating this modified design provided an output with a spectral width as narrow as 0.06nm. DGRs were also integrated into an extremely broad area device of an unorthodox geometry; square devices that lase in two orthogonal directions were fabricated and tested. The last idea investigated was combining a DGR wavelength stabilized laser with a tapered semiconductor optical amplifier into a master oscillator power amplifier device, with the optical coupling between the two components provided by identical grating couplers disposed on the p-side surfaces of each of the devices. These master oscillator power amplifiers provide a peak power of 32W when operating under quasi continuous wave operation.
Show less - Date Issued
- 2006
- Identifier
- CFE0001392, ucf:47004
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001392