Current Search: nitrate (x)
-
-
Title
-
A KINETICS STUDY OF SELECTED FILTRATION MEDIA FOR NUTRIENT REMOVAL AT VARIOUS TEMPERATURES.
-
Creator
-
Henderson, Elizabeth, Chang, Ni-Bin, University of Central Florida
-
Abstract / Description
-
In recent years the nutrient levels of the Upper Floridan aquifer have been increasing (USGS, 2008). An example of this is found in Ocala, Florida where Silver Springs nitrate concentrations have risen from 0.5 mg/L in the 1960's to approximately 1.0 mg/L in 2003 (Phelps, 2004). Because stormwater is a contributor to surficial and groundwater aquifer recharge, there is an increasing need for methods that decrease nitrogen and phosphorus levels. A laboratory column study was conducted to...
Show moreIn recent years the nutrient levels of the Upper Floridan aquifer have been increasing (USGS, 2008). An example of this is found in Ocala, Florida where Silver Springs nitrate concentrations have risen from 0.5 mg/L in the 1960's to approximately 1.0 mg/L in 2003 (Phelps, 2004). Because stormwater is a contributor to surficial and groundwater aquifer recharge, there is an increasing need for methods that decrease nitrogen and phosphorus levels. A laboratory column study was conducted to simulate a retention pond with saturated soil conditions. The objectives of the column studies reported in this thesis were to investigate the capabilities of a natural soil and soil augmentations to remove nitrogen and phosphorus for a range of concentrations at three different temperatures. An analytical attempt to model the columns through low order reaction kinetics and derive the corresponding temperature conversion constant to relate the rate constants is also presented. The Media Mixes were selected through a process of research, preliminary batch testing and then implemented in column studies. Three columns measuring three feet in length and 6 inches outer diameter were packed with a control and two media mixes. Media Mix 1 consisted of 50% fine sand, 30% tire crumb, 20% sawdust by weight and Media Mix 2 consisted of 50% fine sand, 25% sawdust, 15% tire crumb, 10% limestone by weight. The control column was packed with natural soil from Hunter's Trace retention pond located in Ocala, Florida. The reaction rates for nitrate are best modeled as first order for Media Mix 1, and zero order for the Control and Media Mix 2. The reaction rates for orthophosphate are best modeled as zero order, second order and first order for the Control, Media Mix 1, and Media Mix 2 respectively. The best overall media for both nitrate and orthophosphate removal from this study would be Media Mix 1. Media Mix 2 does have the highest average orthophosphate removal of all the mixes for all of the temperatures; however Media Mix 1 outperforms Mix 2 for the other two temperatures. The best column for Nitrate removal is the Media Mix 1 column. The temperature conversion factors for nitrate were found to be 1.11, 1.1, and 1.01 for Media Mix 1, the Control and Media Mix 2 respectively. The temperature conversion factors for orthophosphate were found to be 1.02, 0.99, and 0.95. As well as temperature conversion factors, the activation energies and frequency factors for the Arrhenius Equation were investigated. Average values corresponding to each column, species, and temperature would be inaccurate due to the large variation in calculated values.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002458, ucf:47727
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002458
-
-
Title
-
STORMWATER IRRIGATION OF SAINT AUGUSTINE GRASS:NITROGEN BALANCE AND EVAPOTRANSPIRATION.
-
Creator
-
Hulstein, Ewoud, Wanielista, Martin, University of Central Florida
-
Abstract / Description
-
A change in surface condition of a watershed, which is usually caused by development, can have measured effects on the naturally occurring hydrologic cycle and nitrogen cycle. This could result in environmental problems, such as reduced springflow and eutrophication. In an effort to address these issues, a combination of best management practices (BMPs) can be adhered to. The practice of using excess stormwater as a source for irrigation is proposed as a BMP for the minimization of impacts by...
Show moreA change in surface condition of a watershed, which is usually caused by development, can have measured effects on the naturally occurring hydrologic cycle and nitrogen cycle. This could result in environmental problems, such as reduced springflow and eutrophication. In an effort to address these issues, a combination of best management practices (BMPs) can be adhered to. The practice of using excess stormwater as a source for irrigation is proposed as a BMP for the minimization of impacts by development to the hydrologic and nitrogen cycles. To study the proposed BMP, a field experiment was installed in an outdoor location on the UCF main campus in Orlando, Florida. The experiment consists of three soil chambers, (2x2x4 ft, L:W:H), filled with compacted soil and covered with St. Augustine grass to simulate a suburban lawn. The grass was irrigated up to twice a week with detained stormwater with a nitrate nitrogen concentration of up to 2 mg/L. A mass balance and a total nitrogen balance were performed to determine evapotranspiration (ET) and impacts on groundwater nitrogen content. It was determined that the groundwater characteristics are largely dependent on the characteristics of the soil. The input nitrogen (precipitation and irrigation) was mostly in the form of nitrate and the output nitrogen (groundwater) was mostly in the form of ammonia. A total nitrogen mass balance indicated the mass output of nitrogen was significantly larger than mass input of nitrogen, which was due to ammonia leaching from the soil. Only small concentrations of nitrate were detected in the groundwater, resulting in an estimated nitrate removal (conversion to ammonia) of 97 percent at a depth of four feet when the input nitrate concentration was 2 mg/L. The average ET of the three chambers was compared to the estimated ET from the modified Blaney-Criddle equation on a monthly basis and a yearly basis. The modified Blaney-Criddle equation was proven to be accurate for estimating the actual ET for this application: irrigated St. Augustine grass in the Central Florida climate. In conclusion, using the available literature and the data collected from the field experiment, it was shown through an example design problem that the proposed BMP of using excess stormwater as a source for irrigation can help achieve a pre- versus postdevelopment volume balance and can help control post-development nitrate emissions.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000611, ucf:46511
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000611
-
-
Title
-
THE EFFECTIVENESS OF SPECIFICALLY DESIGNED FILTER MEDIA TO REDUCE NITRATE AND ORTHOPHOSPHATE IN STORMWATER RUNOFF.
-
Creator
-
Moberg, Mikhal, Chang, Ni-Bin, University of Central Florida
-
Abstract / Description
-
Throughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an...
Show moreThroughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an optimal media blend that may be implemented in detention ponds to reduce Nitrate and Phosphorus. The extensive literature search revealed 32 different media that may be used to remove Nitrate and Phosphorus. Each potential media was qualitatively and quantitatively evaluated based on 5 criteria: 1) relevance, 2) permeability, 3) cost, 4) availability in Florida, and 5) additional environmental benefit. The top 7 performing media: Florida peat, sandy loam, woodchips, crushed oyster shell; crushed limestone, tire crumb and sawdust were selected for batch test experimentation. The aerobic conditions in batch test experimentation prohibited the growth of denitrifying bacteria, therefore media mixes were selected for column test experimentation based on Ammonia and Orthophosphate concentrations. Batch test experimentation showed the most effective media to be 50% sand, 30% tire crumb, 20% sawdust by weight (media mix 1) and 50% sand, 25% sawdust, 15% tire crumb, 10% limestone by weight (media mix 2). Media mix 1, media mix 2 and a control are tested in column test experimentation, where the control is site soil from Hunters Trace development in Ocala, Florida. Column test experimentation models a dry detention pond where water passes through a 48 inch unsaturated zone then a 48 inch saturated zone. To test Nitrate and Orthophosphate removal potential, pond water augmented with Nitrate (0.38, 1.26, 2.5 mg/L NO3-N) and Orthophosphate (0.125, 0.361, 0.785 mg/L PO4-P) was pumped into the columns. Media mix 1 and media mix 2 outperformed the control in both Nitrate and Orthophosphate removal. Media mix 1 and media mix 2 had Nitrate removal efficiencies ranging from 60% to 99% and the control had Nitrate removal efficiencies ranging from 38%-80%. Media mix 1 and media mix 2 averaged Orthophosphate removal efficiencies ranging from approximately 42% to 67%. For every run in every influent Orthophosphate concentration the saturated control added Orthophosphate to the water. The Nitrate and Orthophosphate removal performances for media mix 1 and media mix 2 could not be directly compared because of different influent saturated nutrient concentrations.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002240, ucf:47884
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002240
-
-
Title
-
Biogeochemical Cycling and Nutrient Control Strategies for Groundwater at Stormwater Infiltration Basins.
-
Creator
-
O'Reilly, Andrew, Chang, Ni-bin, Wanielista, Martin, Chopra, Manoj, Wang, Dingbao, Katz, Brian, University of Central Florida
-
Abstract / Description
-
Elevated concentrations of nutrients, particularly nitrate, in groundwater and springs in Florida are a growing resource management concern. Stormwater infiltration basins, which are a common stormwater management practice in the well-drained karst terrain areas of Florida, are a potentially important source of nutrients to the groundwater system because stormwater exits the basin by only evaporation or infiltration. To better understand the biogeochemical processes integrating stormwater...
Show moreElevated concentrations of nutrients, particularly nitrate, in groundwater and springs in Florida are a growing resource management concern. Stormwater infiltration basins, which are a common stormwater management practice in the well-drained karst terrain areas of Florida, are a potentially important source of nutrients to the groundwater system because stormwater exits the basin by only evaporation or infiltration. To better understand the biogeochemical processes integrating stormwater infiltration impacts on groundwater resources in a field-scale setting, a combination of hydrologic, soil chemistry, water chemistry, dissolved and soil gas, isotope, and microbiological data was collected from 2007 through 2010 at two stormwater infiltration basins receiving runoff from predominantly residential watersheds in north-central Florida. Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath the two stormwater infiltration basins. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median 41% silt+clay content) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg/L and decreases in nitrate-nitrogen from 2.7 mg/L to less than 0.016 mg/L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median 2% silt+clay content), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen of 5.0(-)7.8 mg/L), resulting in nitrate-nitrogen of 1.3(-)3.3 mg/L in shallow groundwater. Soil extractable nitrate-nitrogen was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Subsurface biogeochemical processes at the clayey stormwater infiltration basin were further analyzed to better understand the effects of the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydroclimatic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved oxygen and nitrate showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time oxygen and nitrate reduction concluded, manganese, iron, and sulfate reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median nitrate-nitrogen less than 0.016 mg/L, excess nitrogen gas up to 3 mg/L progressively enriched in delta-15N during prolonged basin flooding, and isotopically heavy delta-15N and delta-18O of nitrate (up to 25 and 15 per mil, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the nitrogen cycle, switching nitrogen fate beneath the basin from nitrate leaching to reduction in the shallow saturated zone. Soil beneath the sandy stormwater infiltration basin was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative best management practice (BMP) utilizing nutrient reduction and flood control sub-basins. Construction and materials costs, excluding profit and permit fees, for the innovative BMP were about $US 65 per square meter of basin bottom. Comparison of nitrate/chloride ratios for the shallow groundwater indicate that prior to using BAM, nitrate concentrations were substantially influenced by nitrification or variations in nitrate input. In contrast, for the new basin utilizing BAM, nitrate/chloride ratios indicate minor nitrification and nitrate losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest nitrate losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium and plant uptake are minor processes. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM orthophosphate/chloride ratios for shallow groundwater indicate predominantly minor increases and decreases in orthophosphate with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had undergone little biogeochemical transformation. In order to quantify potential processes leading to observed nitrogen losses beneath the innovative BMP, an integrated infiltration basin(-)nitrogen reduction (IBNR) system dynamics model was developed. Based on two simulation periods, the IBNR model indicated denitrification accounted for a loss of about one-third of the total dissolved nitrogen mass inflow and was occurring predominantly in the BAM layer. The IBNR model results in combination with the field-based biogeochemical assessment demonstrated that the innovative BMP using the functionalized soil amendment BAM is a promising passive, economical, stormwater nutrient-treatment technology. Further field- and laboratory-scale research on the long-term sustainability of nutrient losses and further elucidation of causative physicochemical and biogeochemical mechanisms would contribute to improved BAM performance and green infrastructure development in the future.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004419, ucf:49391
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004419
-
-
Title
-
Comparison of a modified and traditional rapid infiltration basin for treatment and control of nutrients in wastewater effluent.
-
Creator
-
Cormier, Jessica, Duranceau, Steven, Wang, Dingbao, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Rapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water...
Show moreRapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water disposal. Few, if any, studies have been published where BAM-modified RIBs have been used for this purpose. In this work, a mixture of clay, tire crumb, and sand (CTS) was selected to serve as the BAM material (Bold and Gold(TM) CTS media). Each RIB was constructed with two feet of either sand or BAM, covering more than 43,600 square feet of surface area. The BAM-modified RIB had an initial 90 pounds per cubic-foot in-place density, and the density of the control RIB approximated about 94 pounds per cubic-foot. Over an eight-month period, loadings to the BAM RIB and control RIB approximated 5.4 million gallons (MG) per acre each. Water samples, collected from lysimeters installed below the 2-foot of sand or BAM materials, were gathered monthly during 2017 (except for September and October due to the impacts of hurricane Irma); these samples were analyzed for water quality to determine nitrate removal. Soil moisture and weather data were also collected over the study period. This study demonstrated the nitrate removal effectiveness of a field-scale BAM-modified RIB as compared to a traditional field-scale sand-based RIB. Results suggest that BAM removed 30 percent more nitrates than the Control (78% and 47%, respectively) under the conditions of the study. Furthermore, BAM removed higher percentages of TN (31%) and TP (62%) than the Control (12% and 28%, respectively).
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007566, ucf:52583
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007566
-
-
Title
-
Amyotrophic Lateral Sclerosis: mechanism behind mutant SOD toxicity and improving current therapeutic strategies.
-
Creator
-
Dennys, Cassandra, Estevez, Alvaro, Kim, Yoon-Seong, Fernandez-Valle, Cristina, Khaled, Annette, University of Central Florida
-
Abstract / Description
-
Amyotrophic Lateral Sclerosis (ALS) is an always lethal motor neuron disease with unknown pathogenesis. Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) have limited neuroprotection in some models of motor neuron degeneration. However the direct effect of Hsp90 inhibition on motor neurons is unknown. Here we show that Hsp90 inhibition induced motor neuron death through activation of the P2X7 receptor. Motor neuron death required phosphatase and tensein homolog (PTEN)...
Show moreAmyotrophic Lateral Sclerosis (ALS) is an always lethal motor neuron disease with unknown pathogenesis. Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) have limited neuroprotection in some models of motor neuron degeneration. However the direct effect of Hsp90 inhibition on motor neurons is unknown. Here we show that Hsp90 inhibition induced motor neuron death through activation of the P2X7 receptor. Motor neuron death required phosphatase and tensein homolog (PTEN)-mediated inhibition of the PI3K/AKT pathway leading to Fas receptor activation and caspase dependent death. The relevance of Hsp90 for motor neuron survival was investigated in mutant Cu/Zn superoxide dismutase (SOD) transgenic animal models for ALS. Nitrated Hsp90, a posttranslational modification known to induce cell death (Franco, Ye et al. 2013), was present in motor neurons after intracellular release of zinc deficient (Zn, D83S) and the SOD in which copper binding site was genetically ablated (Q) but not after copper deficient (Cu) wild type SOD. Zn deficient and Q mutant SOD induced motor neuron death in a peroxynitrite mediated and copper dependent mechanism. Nitrated Hsp90 was not detected in the spinal cord of transgenic animals for ALS-mutant SOD animal models until disease onset. Increased nitrated Hsp90 concentrations correlated with disease progression. Addition of Zn or Q SOD to nontransgenic brain homogenate treated with peroxynitrite led to an increase level of nitrotyrosine in comparison to wild type controls. However, in the same samples there was a 2 to 10 time increase in Hsp90 nitration as compared to nitrotyrosine. The selective increase is likely due to the binding of Hsp90 to Zn deficient and Q SOD as oppose to wild type SOD. These results suggest that Hsp90 nitration facilitated by mutant SOD may cause motor neuron degeneration in ALS. Targeted inhibition of nitrated Hsp90 may be a novel therapeutic approach for ALS. An alternative therapeutic strategy is to target the production of survival factors by glial cells. Riluzole is the only FDA approved drug for the treatment of ALS and it shows a small but significant increase in patient lifespan. Our results show that acute riluzole treatment stimulated trophic factor production by astrocytes and Schwann cells. However long-term exposure reversed and even inhibited the production of trophic factors, an observation that may explain the modest increase in patient survival in clinical trials. Discontinuous riluzole treatment can maintain elevated trophic factor levels and prevent trophic factor reduction in spinal cords of nontransgenic animals. These results suggest that discontinuous riluzole administration may improve ALS patient survival. In summary, we demonstrated that Hsp90 has an essential function in the regulation of motor neuron survival. We have also shown that Hsp90 was nitrated in the presence of mutant SOD and was present during symptom onset and increases as disease progresses, which may explain the toxic gain of function of mutant SOD. Finally we demonstrate a biphasic effect of riluzole on trophic factor production and propose changes in administration to improve effects in ALS patients.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005785, ucf:50069
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005785
-
-
Title
-
An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
-
Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007817, ucf:52875
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007817