Current Search: particle systems (x)
View All Items
- Title
- AUTOMATIC GRAPHICS AND GAME CONTENT GENERATION THROUGH EVOLUTIONARY COMPUTATION.
- Creator
-
Hastings, Erin, Stanley, Kenneth, University of Central Florida
- Abstract / Description
-
Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation...
Show moreSimulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation introduces three novel technologies that together realize this ambition. (1) The first, NEAT Particles, is an evolutionary method to enable users to quickly and easily create complex particle effects through a simple interactive evolutionary computation (IEC) interface. That way, particle effects become an evolvable class of content, which is exploited in the remainder of the dissertation. In particular, (2) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players. Through cgNEAT, the game platform on its own can generate novel content that is designed to satisfy its players. Finally, (3) the Galactic Arms Race (GAR) multiplayer online video game is constructed to demonstrate these techniques working on a real online gaming platform. In GAR, which was made available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. The resulting study shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially significantly reducing the cost of content creation and considerably increasing entertainment value with a constant stream of evolving content.
Show less - Date Issued
- 2009
- Identifier
- CFE0002814, ucf:48143
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002814
- Title
- A METHODOLOGY TO STABILIZE THE SUPPLY CHAIN.
- Creator
-
Sarmiento, Alfonso, Rabelo, Luis, University of Central Florida
- Abstract / Description
-
In todayÃÂ's world, supply chains are facing market dynamics dominated by strong global competition, high labor costs, shorter product life cycles, and environmental regulations. Supply chains have evolved to keep pace with the rapid growth in these business dynamics, becoming longer and more complex. As a result, supply chains are systems with a great number of network connections among their multiple components. The interactions of the network components with respect...
Show moreIn todayÃÂ's world, supply chains are facing market dynamics dominated by strong global competition, high labor costs, shorter product life cycles, and environmental regulations. Supply chains have evolved to keep pace with the rapid growth in these business dynamics, becoming longer and more complex. As a result, supply chains are systems with a great number of network connections among their multiple components. The interactions of the network components with respect to each other and the environment cause these systems to behave in a highly nonlinear dynamic manner. Ripple effects that have a huge, negative impact on the behavior of the supply chain (SC) are called instabilities. They can produce oscillations in demand forecasts, inventory levels, and employment rates and, cause unpredictability in revenues and profits. Instabilities amplify risk, raise the cost of capital, and lower profits. To reduce these negative impacts, modern enterprise managers must be able to change policies and plans quickly when those consequences can be detrimental. This research proposes the development of a methodology that, based on the concepts of asymptotic stability and accumulated deviations from equilibrium (ADE) convergence, can be used to stabilize a great variety of supply chains at the aggregate levels of decision making that correspond to strategic and tactical decision levels. The general applicability and simplicity of this method make it an effective tool for practitioners specializing in the stability analysis of systems with complex dynamics, especially those with oscillatory behavior. This methodology captures the dynamics of the supply chain by using system dynamics (SD) modeling. SD was the chosen technique because it can capture the complex relationships, feedback processes, and multiple time delays that are typical of systems in which oscillations are present. If the behavior of the supply chain shows instability patterns, such as ripple effects, the methodology solves an optimization problem to find a stabilization policy to remove instability or minimize its impact. The policy optimization problem relies upon a theorem which states that ADE convergence of a particular state variable of the system, such as inventory, implies asymptotic stability for that variable. The stabilization based on the ADE requires neither linearization of the system nor direct knowledge of the internal structure of the model. Moreover, the ADE concept can be incorporated easily in any SD modeling language. The optimization algorithm combines the advantage of particle swarm optimization (PSO) to determine good regions of the search space with the advantage of local optimization to quickly find the optimal point within those regions. The local search uses a Powell hill-climbing (PHC) algorithm as an improved procedure to the solution obtained from the PSO algorithm, which assures a fast convergence of the ADE. The experiments showed that solutions generated by this hybrid optimization algorithm were robust. A framework built on the premises of this methodology can contribute to the analysis of planning strategies to design robust supply chains. These improved supply chains can then effectively cope with significant changes and disturbances, providing companies with the corresponding cost savings.
Show less - Date Issued
- 2010
- Identifier
- CFE0002986, ucf:47977
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002986