Current Search: reclaimed water (x)
View All Items
- Title
- Anthropogenic Organic Chemical Removal from a Surficial Groundwater and Mass Transfer Modeling in a Nanofiltration Membrane Process.
- Creator
-
Jeffery, Samantha, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Yestrebsky, Cherie, University of Central Florida
- Abstract / Description
-
This dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine...
Show moreThis dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine monitoring of fourteen TrOCs in reclaimed water and at the water treatment facility revealed varying degrees of TrOC detection in the environment. Certain TrOCs, including caffeine and DEET, were detected in a majority of the water sampling locations evaluated in this work. However, subsequent dilution with highly-treated reverse osmosis (RO) permeate from alternative supplies resulted in TrOCs below detection limits in potable water at the point-of-entry (POE). Pilot testing was employed to determine the extent of TrOC removal by NF. Prior to evaluating TrOC removal, hydraulic transients within the pilot process were first examined to determine the required length of time the pilot needed to reach steady-state. The transient response of a center-port NF membrane process was evaluated using a step-input dose of a sodium chloride solution. The pilot was configured as a two-stage, split-feed, center-exit, 7:2 pressure vessel array process, where the feed water is fed to both ends of six element pressure vessels, and permeate and concentrate streams are collected after only three membrane elements. The transient response was described as a log-logistic system with a maximum delay time of 285 seconds for an 85% water recovery and 267 gallon per minute feed flowrate.Eleven TrOC pilot unit experiments were conducted with feed concentrations ranging from 0.52 to 4,500 ?g/L. TrOC rejection was well-correlated with compound molecular volume and polarizability, with coefficient of determination (R2) values of 0.94. To enhance this correlation, an extensive literature review was conducted and independent literature sources were correlated with rejection. Literature citations reporting the removal effectiveness of an additional sixty-one TrOCs by loose NF membranes (a total of 95 data points) were found to be well-correlated with molecular volume and polarizability, with R2 values of 0.72 and 0.71, respectively.Of the TrOC's detected during this research, the anthropogenic solute caffeine was selected to be modeled using the homogeneous solution diffusion model (HSDM) and the HSDM with film theory (HSDM-FT). Mass transfer coefficients, K_w (water) K_s (caffeine), and k_b (caffeine back-transport) were determined experimentally, and K_s was also determined using the Sherwood correlation method. Findings indicate that caffeine transport through the NF pilot could be explained using experimentally determined K_s values without incorporating film theory, since the HSDM resulted in a better correlation between predicted and actual caffeine permeate concentrations compared to the HSDM-FT and the HSDM using K_s obtained using Sherwood applications. Predicted versus actual caffeine content was linearly compared, revealing R2 values on the order of 0.99, 0.96, and 0.99 for the HSDM without FT, HSDM-FT, and HSDM using a K_s value obtained using the Sherwood correlation method. However, the use of the HSDM-FT and the Sherwood number resulted in the over-prediction of caffeine concentrations in permeate streams by 27 percent and 104 percent, respectively.
Show less - Date Issued
- 2016
- Identifier
- CFE0006331, ucf:51545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006331
- Title
- Comparison of a modified and traditional rapid infiltration basin for treatment and control of nutrients in wastewater effluent.
- Creator
-
Cormier, Jessica, Duranceau, Steven, Wang, Dingbao, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Rapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water...
Show moreRapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water disposal. Few, if any, studies have been published where BAM-modified RIBs have been used for this purpose. In this work, a mixture of clay, tire crumb, and sand (CTS) was selected to serve as the BAM material (Bold and Gold(TM) CTS media). Each RIB was constructed with two feet of either sand or BAM, covering more than 43,600 square feet of surface area. The BAM-modified RIB had an initial 90 pounds per cubic-foot in-place density, and the density of the control RIB approximated about 94 pounds per cubic-foot. Over an eight-month period, loadings to the BAM RIB and control RIB approximated 5.4 million gallons (MG) per acre each. Water samples, collected from lysimeters installed below the 2-foot of sand or BAM materials, were gathered monthly during 2017 (except for September and October due to the impacts of hurricane Irma); these samples were analyzed for water quality to determine nitrate removal. Soil moisture and weather data were also collected over the study period. This study demonstrated the nitrate removal effectiveness of a field-scale BAM-modified RIB as compared to a traditional field-scale sand-based RIB. Results suggest that BAM removed 30 percent more nitrates than the Control (78% and 47%, respectively) under the conditions of the study. Furthermore, BAM removed higher percentages of TN (31%) and TP (62%) than the Control (12% and 28%, respectively).
Show less - Date Issued
- 2018
- Identifier
- CFE0007566, ucf:52583
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007566