Current Search: renewable (x)
-
-
Title
-
Planar Organic Photovoltaic Devices.
-
Creator
-
Alzubi, Feras, Khondaker, Saiful, Chow, Lee, Schelling, Patrick, Gesquiere, Andre, University of Central Florida
-
Abstract / Description
-
Organic Photovoltaic devices (OPV) are considered to be attractive candidates for clean and renewable energy source because of their potential for low cost of fabrication, easy processing, and their mechanical flexibility. The device efficiency of OPV cells are limited by several factors. Among them are: (i) donor-acceptor interface, (ii) morphology of the materials, (iii) electrode-organic semiconductor (OSC) interface and (iv) device architecture such as active material thickness and...
Show moreOrganic Photovoltaic devices (OPV) are considered to be attractive candidates for clean and renewable energy source because of their potential for low cost of fabrication, easy processing, and their mechanical flexibility. The device efficiency of OPV cells are limited by several factors. Among them are: (i) donor-acceptor interface, (ii) morphology of the materials, (iii) electrode-organic semiconductor (OSC) interface and (iv) device architecture such as active material thickness and electrode separation. Although, the donor-acceptor interface has been studied in detail, the commonly prevalent vertical OPV device structure does not allow a good understanding of the other key issues as the vertical structure limits one of the electrode to be a transparent electrode as well as introducing inseparable relation between the electrodes separation and the active material thickness. In addition, it is also well known that the charge transport in OSC is anisotropic and the charge mobility is better in lateral direction rather than vertical direction. In order to address some of these issues, we fabricated OPV devices in a planar device structure where cathode and anode of dissimilar metals are in-plane with each other and their photovoltaic behaviors were studied. We used poly(3-hexylthiophene) and [6,6]-pheny1 C61-butyric acid methy1 ester (P3HT:PCBM) blend as an active material. In particular, we present a detailed study about the effects of the structural parameters such as the channel length, the active layer thickness, and the work function of the electrodes on the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and the power conversion efficiency (PCE).In order to determine the suitable anode and cathode for the planar organic photovoltaic (P-OPV) structure, we first fabricated and measured organic field effect transistor (OFET) devices with different contacts and studied the effect of barrier height at the P3HT:PCBM/electrode interface on the device output and transport properties. The study showed a clear effect of varying the contact material on the charge injection mechanism and on the carriers mobilities. The results have also shown that Au with high hole mobility and on current in the p-channel can be used as an anode (holes extractor) in the P-OPV device while In, Cr, and Ti that showed a reasonable value of electron mobility can be good candidates for cathode (electron extractor). We also found that, Ag, Al, and Mg showed large barrier which resulted in large threshold voltage in the I-V curve making them undesired cathode materials in the P-OPV device. We then fabricated P-OPV devices with Au as an anode material and varied the cathode material to study the effect of the interface between the P3HT:PCBM layer and the cathode material. When Al, Mg, or Ag used as a cathode material no PV behavior was observed, while PV behavior was observed for In, Cr, and Ti cathode materials. The PV behavior and the characteristic parameters including Voc, Isc, FF and PCE were affected by varying the cathode material. The results have shown that the P-OPV device performance can be affected by the cathode material depending on the properties and the work function of the metal.We have also studied the effect of varying the P3HT:PCBM layer thickness at a fixed channel length for Cr and Ti cathode materials and Au as anode. While Voc and FF values do not change, Isc and PCE increase with increasing the layer thickness due to the increase of the light absorption and charges generation. Moreover, we studied the effect of varying the channel length at a fixed film thickness; and showed that the values of Isc and PCE increase with decreasing channel length while Voc and FF maintain the same value. In this thesis we will also present the results on experimentally defining and testing the illuminated area in the P-OPV device by using different measurement set-ups and different electrodes patterns. The results prove that the illuminated area in the P-OPV device is the area enclosed between the two electrodes. Lastly, we will present the effect of the P3HT:PCBM ratio on the P-OPV device performance. We show that 1:2 ratio is the optimized ratio for the P-OPV device. The detailed results in this thesis show a potential opportunity to help improving and understanding the design of OPV device by understanding the effects of the device structural parameters.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004804, ucf:49754
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004804
-
-
Title
-
A Comprehensive Assessment of Vehicle-to-Grid Systems and Their Impact to the Sustainability of Current Energy and Water Nexus.
-
Creator
-
Zhao, Yang, Tatari, Omer, Oloufa, Amr, Mayo, Talea, Zheng, Qipeng, University of Central Florida
-
Abstract / Description
-
This dissertation aims to explore the feasibility of incorporating electric vehicles into the electric power grid and develop a comprehensive assessment framework to predict and evaluate the life cycle environmental, economic and social impact of the integration of Vehicle-to-Grid systems and the transportation-water-energy nexus. Based on the fact that electric vehicles of different classes have been widely adopted by both fleet operators and individual car owners, the following questions...
Show moreThis dissertation aims to explore the feasibility of incorporating electric vehicles into the electric power grid and develop a comprehensive assessment framework to predict and evaluate the life cycle environmental, economic and social impact of the integration of Vehicle-to-Grid systems and the transportation-water-energy nexus. Based on the fact that electric vehicles of different classes have been widely adopted by both fleet operators and individual car owners, the following questions are investigated: 1. Will the life cycle environmental impacts due to vehicle operation be reduced? 2. Will the implementation of Vehicle-to-Grid systems bring environmental and economic benefits? 3. Will there be any form of air emission impact if large amounts of electric vehicles are adopted in a short time? 4. What is the role of the Vehicle-to-Grid system in the transportation-water-energy nexus? To answer these questions: First, the life cycle environmental impacts of medium-duty trucks in commercial delivery fleets are analyzed. Second, the operation mechanism of Vehicle-to-Grid technologies in association with charging and discharging of electric vehicles is researched. Third, the feasible Vehicle-to-Grid system is further studied taking into consideration the spatial and temporal variance as well as other uncertainties within the system. Then, a comparison of greenhouse gas emission mitigation of the Vehicle-to-Grid system and the additional emissions caused by electric vehicle charging through marginal electricity is analyzed. Finally, the impact of the Vehicle-to-Grid system in the transportation-water-energy nexus, and the underlying environmental, economic and social relationships are simulated through system dynamic modeling. The results provide holistic evaluations and spatial and temporal projections of electric vehicles, Vehicle-to-Grid systems, wind power integration, and the transportation-water-energy nexus.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007300, ucf:52153
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007300
-
-
Title
-
Optimization of Ocean Thermal Energy Conversion Power Plants.
-
Creator
-
Rizea, Steven, Ilie, Marcel, Bai, Yuanli, Vasu Sumathi, Subith, University of Central Florida
-
Abstract / Description
-
A proprietary Ocean Thermal Energy Conversion (OTEC) modeling tool, the Makai OTEC Thermodynamic and Economic Model (MOTEM), is leveraged to evaluate the accuracy of finite-time thermodynamic OTEC optimization methods. MOTEM is a full OTEC system simulator capable of evaluating the effects of variation in heat exchanger operating temperatures and seawater flow rates. The evaluation is based on a comparison of the net power output of an OTEC plant with a fixed configuration. Select...
Show moreA proprietary Ocean Thermal Energy Conversion (OTEC) modeling tool, the Makai OTEC Thermodynamic and Economic Model (MOTEM), is leveraged to evaluate the accuracy of finite-time thermodynamic OTEC optimization methods. MOTEM is a full OTEC system simulator capable of evaluating the effects of variation in heat exchanger operating temperatures and seawater flow rates. The evaluation is based on a comparison of the net power output of an OTEC plant with a fixed configuration. Select optimization methods from the literature are shown to produce between 93% and 99% of the maximum possible amount of power, depending on the selection of heat exchanger performance curves. OTEC optimization is found to be dependent on the performance characteristics of the evaporator and condenser used in the plant. Optimization algorithms in the literature do not take heat exchanger performance variation into account, which causes a discrepancy between their predictions and those calculated with MOTEM. A new characteristic metric of OTEC optimization, the ratio of evaporator and condenser overall heat transfer coefficients, is found. The heat transfer ratio is constant for all plant configurations in which the seawater flow rate is optimized for any particular evaporator and condenser operating temperatures. The existence of this ratio implies that a solution for the ideal heat exchanger operating temperatures could be computed based on the ratio of heat exchanger performance curves, and additional research is recommended.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004430, ucf:49343
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004430
-
-
Title
-
Design of High-Efficiency Rare-Earth Permanent Magnet Synchronous Motor and Drive System.
-
Creator
-
Liu, Hanzhou, Wu, Thomas, Batarseh, Issa, Haralambous, Michael, Lin, Mingjie, Chow, Louis, University of Central Florida
-
Abstract / Description
-
Utilization of renewable energy has become the future trend in the trucking industry. Electrical power generated from renewable energy can replace part of the fuel usage. There is usually limited space for storing on-board battery. Thus, to better utilize the battery power, it becomes critical to have an efficient energy conversion device that can transfer energy from battery to amenities such as air conditioner, microwave, TV, mini refrigerator, etc. In this dissertation, a designed...
Show moreUtilization of renewable energy has become the future trend in the trucking industry. Electrical power generated from renewable energy can replace part of the fuel usage. There is usually limited space for storing on-board battery. Thus, to better utilize the battery power, it becomes critical to have an efficient energy conversion device that can transfer energy from battery to amenities such as air conditioner, microwave, TV, mini refrigerator, etc. In this dissertation, a designed permanent magnet synchronous motor (PMSM) can be such energy conversion device for an electric Auxiliary Power Unit (APU) application, which will have a desired output power of 2 kW at 2krpm, and maintain an efficiency greater than 90%. The design calls for good performance over a speed range of 1.5 krpm to 2.5 krpm. The current air conditioning system for automobile works only by (")on(") or (")off(") mode. For the heat mode, that means it is on with heat once the cabin temperature drops down to a level and off if the temperature rises back above that level. For the cool mode, that means it is on with cold air once the cabin temperature rises above a level, and off if the temperature drops back to that level. This is because the motor does not have the speed control functionality according to the temperature variation and people in the cabin do not feel much comfortable for that temperature change periodically as well as the inefficient energy consumption. With our novel technology, the designed motor can adjust its speed through the embedded system of our novel DC to AC inverter to provide a variable load. For example, with high efficiency, the fully charged battery sets (48 volts) can supply the electrical power and cooling to the cabin forabout 10 hours without recharging using the main engine.Copper loss is the most significant part of all the losses in low speed electric machines. Reducing the copper loss is the key to build highly efficient machine. We use copper wires with the current density lower than traditional design which result in large cross section of the wire and thus reduce the copper loss and improve the efficiency. This also makes thermal management easier and reduces the need to use active cooling methodologies (such as fan, liquid cooling or spray cooling); and hence the overall power density of the whole system (including cooling devices) will not decease much. In traditional machine design, the torque angle is designed to be in the rangeof 15 to 30 degrees at the rated power and speed. In our high efficiency motor design, we propose to use much lower torque angle of 2 to 15 degrees at the rated power and speed. Such design caneffectively increase the overload power handling capability and efficiency. Besides, small torque angle will result in large airgap size and increased thickness of the permanent magnets. Large airgap helps to reduce the windage loss of the machine and generates a lot less mechanical noise based on our design experience. Increased thickness of the permanent magnets helps to avoid thedemagnetization.As the technology of advanced micro-controller develops, fast response power electronic devices can be used in the motor controller. A novel design of DC to AC inverter with the fieldoriented control scheme and sliding mode observer algorithm for driving the designed motor is developed. The inverter has the capability of driving the motor with its output power at 2 kW.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006224, ucf:51064
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006224
-
-
Title
-
Manufacturing of Single Solid Oxide Fuel Cells.
-
Creator
-
Torres-Caceres, Jonathan, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials...
Show moreSolid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials and manufacturing methods is necessary to reduce costs and improve efficiency to make the technology commercially viable.The goal of the research is to optimize and simplify the production of single SOFCs using high performance ceramics. This includes the use of 8mol% Y2O3-ZrO2 (YSZ) and 10mol% Sc2O3-1mol%CeO2-ZrO2 (SCSZ) layered electrolytes which purport higher conductivity than traditional pure YSZ electrolytes. Prior to printing the electrodes onto the electrolyte, the cathode side of the electrolyte was coated with 20mol% Gd2O3-CeO2 (GDC). The GDC coating prevents the formation of a nonconductive La2Zr2O7 pyrochlore layer, which forms due to the interdiffusion of the YSZ electrolyte ceramic and the (La0.6Sr0.4)0.995Fe0.8Co0.2O3 (LSCF) cathode ceramic during sintering. The GDC layer was deposited by spin coating a suspension of 10wt% GDC in ethanol onto the electrolyte. Variation of parameters such as time, speed, and ramp rate were tested. Deposition of the electrodes onto the electrolyte surface was done by screen printing. Ink was produced using a three roll mill from a mixture of ceramic electrode powder, terpineol, and a pore former. The pore former was selected based on its ability to form a uniform well-connected pore matrix within the anode samples that were pressed and sintered. Ink development involved the production of different ratios of powder-to-terpineol inks to vary the viscosity. The different inks were used to print electrodes onto the electrolytes to gauge print quality and consistency. Cells were produced with varying numbers of layers of prints to achieve a desirable thickness. Finally, the densification behaviors of the major materials used to produce the single cells were studied to determine the temperatures at which each component needs to be sintered to achieve the desired density and to determine the order of electrode application, so as to avoid over-densification of the electrodes. Complete cells were tested at the National Energy Technology Laboratory in Morgantown, WV. Cells were tested in a custom-built test stand under constant voltage at 800(&)deg;C with 3% humidified hydrogen as the fuel. Both voltage-current response and impedance spectroscopy tests were conducted after initial startup and after 20 hours of operation. Impedance tests were performed at open circuit voltage and under varying loads in order to analyze the sources of resistance within the cell. A general increase in impedance was found after the 20h operation. Scanning electron micrographs of the cell microstructures found delamination and other defects which reduce performance. Suggestions for eradicating these issues and improving performance have been made.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004946, ucf:49641
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004946
-
-
Title
-
A Systems Approach to Sustainable Energy Portfolio Development.
-
Creator
-
Hadian Niasar, Saeed, Reinhart, Debra, Madani Larijani, Kaveh, Wang, Dingbao, Lee, Woo Hyoung, Pazour, Jennifer, University of Central Florida
-
Abstract / Description
-
Adequate energy supply has become one of the vital components of human development and economic growth of nations. In fact, major components of the global economy such as transportation services, communications, industrial processes, and construction activities are dependent on adequate energy resources. Even mining and extraction of energy resources, including harnessing the forces of nature to produce energy, are dependent on accessibility of sufficient energy in the appropriate form at the...
Show moreAdequate energy supply has become one of the vital components of human development and economic growth of nations. In fact, major components of the global economy such as transportation services, communications, industrial processes, and construction activities are dependent on adequate energy resources. Even mining and extraction of energy resources, including harnessing the forces of nature to produce energy, are dependent on accessibility of sufficient energy in the appropriate form at the desired location. Therefore, energy resource planning and management to provide appropriate energy in terms of both quantity and quality has become a priority at the global level. The increasing demand for energy due to growing population, higher living standards, and economic development magnifies the importance of reliable energy plans. In addition, the uneven distribution of traditional fossil fuel energy sources on the Earth and the resulting political and economic interactions are other sources of complexity within energy planning. The competition over fossil fuels that exists due to gradual depletion of such sources and the tremendous thirst of current global economic operations for these sources, as well as the sensitivity of fossil fuel supplies and prices to global conditions, all add to the complexity of effective energy planning. In addition to diversification of fossil fuel supply sources as a means of increasing national energy security, many governments are investing in non-fossil fuels, especially renewable energy sources, to combat the risks associated with adequate energy supply. Moreover, increasing the number of energy sources also adds further complication to energy planning. Global warming, resulting from concentration of greenhouse gas emissions in the atmosphere, influences energy infrastructure investments and operations management as a result of international treaty obligations and other regulations requiring that emissions be cut to sustainable levels. Burning fossil fuel, as one of the substantial driving factors of global warming and energy insecurity, is mostly impacted by such policies, pushing forward the implementation of renewable energy polices. Thus, modern energy portfolios comprise a mix of renewable energy sources and fossil fuels, with an increasing share of renewables over time. Many governments have been setting renewable energy targets that mandate increasing energy production from such sources over time. Reliance on renewable energy sources certainly helps with reduction of greenhouse gas emissions while improving national energy security. However, the growing implementation of renewable energy has some limitations. Such energy technologies are not always as cheap as fossil fuel sources, mostly due to immaturity of these energy sources in most locations as well as high prices of the materials and equipment to harness the forces of nature and transform them to usable energy. In addition, despite the fact that renewable energy sources are traditionally considered to be environmentally friendly, compared to fossil fuels, they sometimes require more natural resources such as water and land to operate and produce energy. Hence, the massive production of energy from these sources may lead to water shortage, land use change, increasing food prices, and insecurity of water supplies. In other words, the energy production from renewables might be a solution to reduce greenhouse gas emissions, but it might become a source of other problems such as scarcity of natural resources.The fact that future energy mix will rely more on renewable sources is undeniable, mostly due to depletion of fossil fuel sources over time. However, the aforementioned limitations pose a challenge to general policies that encourage immediate substitution of fossil fuels with renewables to battle climate change. In fact, such limitations should be taken into account in developing reliable energy policies that seek adequate energy supply with minimal secondary effects. Traditional energy policies have been suggesting the expansion of least cost energy options, which were mostly fossil fuels. Such sources used to be considered riskless energy options with low volatility in the absence of competitive energy markets in which various energy technologies are competing over larger market shares. Evolution of renewable energy technologies, however, complicated energy planning due to emerging risks that emanated mostly from high price volatility. Hence, energy planning began to be seen as investment problems in which the costs of energy portfolio were minimized while attempting to manage associated price risks. So, energy policies continued to rely on risky fossil fuel options and small shares of renewables with the primary goal to reduce generation costs. With emerging symptoms of climate change and the resulting consequences, the new policies accounted for the costs of carbon emissions control in addition to other costs. Such policies also encouraged the increased use of renewable energy sources. Emissions control cost is not an appropriate measure of damages because these costs are substantially less than the economic damages resulting from emissions. In addition, the effects of such policies on natural resources such as water and land is not directly taken into account. However, sustainable energy policies should be able to capture such complexities, risks, and tradeoffs within energy planning. Therefore, there is a need for adequate supply of energy while addressing issues such as global warming, energy security, economy, and environmental impacts of energy production processes. The effort in this study is to develop an energy portfolio assessment model to address the aforementioned concerns.This research utilized energy performance data, gathered from extensive review of articles and governmental institution reports. The energy performance values, namely carbon footprint, water footprint, land footprint, and cost of energy production were carefully selected in order to have the same basis for comparison purposes. If needed, adjustment factors were applied. In addition, the Energy Information Administration (EIA) energy projection scenarios were selected as the basis for estimating the share of the energy sources over the years until 2035. Furthermore, the resource availability in different states within the U.S. was obtained from publicly available governmental institutions that provide such statistics. Specifically, the carbon emissions magnitudes (metric tons per capita) for different states were extracted from EIA databases, states' freshwater withdrawals (cubic meters per capita) were found from USGS databases, states' land availability values (square kilometers) were obtained from the U.S. Census Bureau, and economic resource availability (GDP per capita) for different states were acquired from the Bureau of Economic Analysis.In this study, first, the impacts of energy production processes on global freshwater resources are investigated based on different energy projection scenarios. Considering the need for investing on energy sources with minimum environmental impacts while securing maximum efficiency, a systems approach is adopted to quantify the resource use efficiency of energy sources under sustainability indicators. The sensitivity and robustness of the resource use efficiency scores are then investigated versus existing energy performance uncertainties and varying resource availability conditions. The resource use efficiency of the energy sources is then regionalized for different resource limitation conditions in states within the U.S. Finally, a sustainable energy planning framework is developed based on Modern Portfolio Theory (MPT) and Post-Modern Portfolio Theory (PMPT) with consideration of the resource use efficiency measures and associated efficiency risks.In the energy-water nexus investigation, the energy sources are categorized into 10 major groups with distinct water footprint magnitudes and associated uncertainties. The global water footprint of energy production processes are then estimated for different EIA energy mix scenarios over the 2012-2035 period. The outcomes indicate that the water footprint of energy production increases by almost 50% depending on the scenario. In fact, growing energy production is not the only reason for increasing the energy related water footprint. Increasing the share of water intensive energy sources in the future energy mix is another driver of increasing global water footprint of energy in the future. The results of the energies' water footprint analysis demonstrate the need for a policy to reduce the water use of energy generation. Furthermore, the outcomes highlight the importance of considering the secondary impacts of energy production processes besides their carbon footprint and costs. The results also have policy implications for future energy investments in order to increase the water use efficiency of energy sources per unit of energy production, especially those with significant water footprint such as hydropower and biofuels.In the next step, substantial efforts have been dedicated to evaluating the efficiency of different energy sources from resource use perspective. For this purpose, a system of systems approach is adopted to measure the resource use efficiency of energy sources in the presence of trade-offs between independent yet interacting systems (climate, water, land, economy). Hence, a stochastic multi-criteria decision making (MCDM) framework is developed to compute the resource use efficiency scores for four sustainability assessment criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production considering existing performance uncertainties. The energy sources' performances under aforementioned sustainability criteria are represented in ranges due to uncertainties that exist because of technological and regional variations. Such uncertainties are captured by the model based on Monte-Carlo selection of random values and are translated into stochastic resource use efficiency scores. As the notion of optimality is not unique, five MCDM methods are exploited in the model to counterbalance the bias toward definition of optimality. This analysis is performed under (")no resource limitation(") conditions to highlight the quality of different energy sources from a resource use perspective. The resource use efficiency is defined as a dimensionless number in scale of 0-100, with greater numbers representing a higher efficiency. The outcomes of this analysis indicate that despite increasing popularity, not all renewable energy sources are more resource use efficient than non-renewable sources. This is especially true for biofuels and different types of ethanol that demonstrate lower resource use efficiency scores compared to natural gas and nuclear energy. It is found that geothermal energy and biomass energy from miscanthus are the most and least resource use efficient energy alternatives based on the performance data available in the literature. The analysis also shows that none of the energy sources are strictly dominant or strictly dominated by other energy sources. Following the resource use efficiency analysis, sensitivity and robustness analyses are performed to determine the impacts of resource limitations and existing performance uncertainties on resource use efficiency, respectively. Sensitivity analysis indicates that geothermal energy and ethanol from sugarcane have the lowest and highest resource use efficiency sensitivity, respectively. Also, it is found that from a resource use perspective, concentrated solar power (CSP) and hydropower are respectively the most and least robust energy options with respect to the existing performance uncertainties in the literature.In addition to resource use efficiency analysis, sensitivity analysis and robustness analysis, of energy sources, this study also investigates the scheme of the energy production mix within a specific region with certain characteristics, resource limitations, and availabilities. In fact, different energy sources, especially renewables, vary in demand for natural resources (such as water and land), environmental impacts, geographic requirements, and type of infrastructure required for energy production. In fact, the efficiency of energy sources from a resource use perspective is dependent upon regional specifications, so the energy portfolio varies for different regions due to varying resource availability conditions. Hence, the resource use efficiency scores of different energy technologies are calculated based on the aforementioned sustainability criteria and regional resource availability and limitation conditions (emissions, water resources, land, and GDP) within different U.S. states, regardless of the feasibility of energy alternatives in each state. Sustainability measures are given varying weights based on the emissions cap, available economic resources, land, and water resources in each state, upon which the resource use efficiency of energy sources is calculated by utilizing the system of systems framework developed in the previous step. Efficiency scores are graphically illustrated on GIS-based maps for different states and different energy sources. The results indicate that for some states, fossil fuels such as coal and natural gas are as efficient as renewables like wind and solar energy technologies from resource use perspective. In other words, energy sources' resource use efficiency is significantly sensitive to available resources and limitations in a certain location.Moreover, energy portfolio development models have been created in order to determine the share of different energy sources of total energy production, in order to meet energy demand, maintain energy security, and address climate change with the least possible adverse impacts on the environment. In fact, the traditional (")least cost(") energy portfolios are outdated and should be replaced with (")most efficient(") ones that are not only cost-effective, but also environmentally friendly. Hence, the calculated resource use efficiency scores and associated statistical analysis outcomes for a range of renewable and nonrenewable energy sources are fed into a portfolio selection framework to choose the appropriate energy mixes associated with the risk attitudes of decision makers. For this purpose, Modern Portfolio Theory (MPT) and Post-Modern Portfolio Theory (PMPT) are both employed to illustrate how different interpretations of (")risk of return(") yield different energy portfolios. The results indicate that 2012 energy mix and projected world's 2035 energy portfolio are not sustainable in terms of resource use efficiency and could be substituted with more reliable, more effective portfolios that address energy security and global warming with minimal environmental and economic impacts.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005001, ucf:50020
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005001
-
-
Title
-
OPTIMAL SINTERING TEMPERATURE OF CERIA-DOPED SCANDIA STABILIZED ZIRCONIA FOR USE IN SOLID OXIDE FUEL CELLS.
-
Creator
-
Assuncao, Amanda K, Orlovskaya, Nina, University of Central Florida
-
Abstract / Description
-
Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all...
Show moreCarbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. One such technology that is currently being researched, is the Solid Oxide Fuel Cell (SOFC). This is a relatively simple device that converts chemical energy into electrical energy with no harmful emissions. For these devices to work properly, they require an electrolyte material that has high ionic conductivity with good phase stability at a variety of temperatures. The research presented in this study will concentrate intensively on just one of the many candidates for SOFC electrolytes. 1 mol% CeO2 - 10 mol% Sc2O3 - 89 mol% ZrO2 manufactured by Treibacher Industries was analyzed to better understand its sintering properties, phase stability, and molecular structure. Sintering was performed at temperatures ranging from 900oC to 1600oC and the shrinkage, density and porosity were examined for each temperature. Raman Spectroscopy and X-Ray Powder Diffraction were also conducted for comparison with other known compositions to see if the powder undergoes any phase transitions or instability.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000408, ucf:45894
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000408
-
-
Title
-
Design and Optimization of a Wave Energy Harvester Utilizing a Flywheel Energy Storage System.
-
Creator
-
Helkin, Steven, Lin, Kuo-Chi, Gordon, Ali, Raghavan, Seetha, University of Central Florida
-
Abstract / Description
-
This thesis details the design and optimization of a buoy used to collect renewable energy from ocean waves. The proposed buoy is a point absorber(-)a device that transforms the kinetic energy of the vertical motion of surface waves into electrical energy. The focus of the research is on the mechanical system used to collect the energy, and methods to improve it for eventual use in an actual wave energy harvester. A flywheel energy storage system was utilized in order to provide an improved...
Show moreThis thesis details the design and optimization of a buoy used to collect renewable energy from ocean waves. The proposed buoy is a point absorber(-)a device that transforms the kinetic energy of the vertical motion of surface waves into electrical energy. The focus of the research is on the mechanical system used to collect the energy, and methods to improve it for eventual use in an actual wave energy harvester. A flywheel energy storage system was utilized in order to provide an improved power output from the system, even with the intermittent input of force exerted by ocean waves. A series of laboratory prototypes were developed to analyze parameters that are important to the success of the point absorb mechanical system. By introducing a velocity-based load control scheme in conjunction with flywheel energy storage, it was seen that the average power output by the prototype was increased. The generator load is controlled via a relay switch that removes electrical resistance from the generator(-)this sacrifices time during which power is drawn from the system, but also allows the buoy to move with less resistance. A simulation model was developed in order to analyze the theoretical wave absorber system and optimize the velocity threshold parameters used in the load control. Results indicate that the power output by the system can be substantially improved through the use of a flywheel energy storage control scheme that engages and disengages the electrical load based on the rotational velocity of the flywheel system. The results of the optimization are given for varying-sized generator systems input into the simulation in order to observe the associated trends.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004118, ucf:49113
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004118
-
-
Title
-
Thermal Stability Characteristics of Fisher-Tropsch and Hydroprocessed Alternative Aviation Fuels in a Fixed Bed Reactor.
-
Creator
-
Arias Quintero, Sergio, Kapat, Jayanta, Chen, Ruey-Hung, Blair, Richard, University of Central Florida
-
Abstract / Description
-
Growing prices, limited supply, and public concern about greenhouse gases associated with crude-derived jet fuels have led to development of renewable alternatives which must be compatible with the worldwide civilian and military aviation infrastructure, which were designed for operation with Jet-A/JP-8. Any alternative fuel should not have negative effects on the aircraft engines and fuel systems, especially from a thermal stability perspective, since any adverse effect of the physical...
Show moreGrowing prices, limited supply, and public concern about greenhouse gases associated with crude-derived jet fuels have led to development of renewable alternatives which must be compatible with the worldwide civilian and military aviation infrastructure, which were designed for operation with Jet-A/JP-8. Any alternative fuel should not have negative effects on the aircraft engines and fuel systems, especially from a thermal stability perspective, since any adverse effect of the physical properties, and chemical composition, including existence of trace elements, of those fuels may only be revealed after extensive operation, resulting in higher life-cycle maintenance and operation costs.This study considered four types of alternative fuels: two derived by Fischer-Tropsch (FT) process, and two types of Hydro-processing Esters and Fatty acids (HEFA). For each of these types, both raw and 50:50 blends in volume with Jet-A samples have been prepared, thus resulting in eight different fuel blends. Fit-for-purpose ability of these alternative fuels is first investigated by studying the effects of the fuel properties and composition effects on elastomer materials, and micro-turbine performance. When elastomer o-rings, similar to those used in aircraft fuel systems were immersed in renewable fuels, smaller volume change or swelling was detected (lower than 2%), contrary to a 14% swelling observed for baseline Jet-A. Lower swelling may result into leaks during aircraft operation. This trend was reversed when renewable fuels were blended with aromatics containing Jet-A.Lower energetic content per unit volume of the renewable fuels, resulted in a thrust reduction around 10% when compared to baseline Jet-A at full throttle settings, but other than this, no other significant effect on the engine combustion temperature or other parameters were found for short duration testing. On the other hand at the end of the alternative fuel testing an injector issue was detected, which caused a localized heat zone at the turbine stator, and subsequent damage. The investigation of the causes of this nozzle fouling, which may be related to fuel contamination, turbine manufacture defects, or operation conditions is left for future studies.Primary focus of this study is coking behavior of 8 different alternative fuel blends over 4 different metallic surfaces, as compared against baseline Jet-A. A specialized single tube heat exchanger apparatus was used where each fuel sample was allowed to flow through a metal tube placed inside a tube furnace. Thermal stresses caused by the break-down of hydrocarbon molecules and the catalytic effects of the tube surfaces affect thermal stability of the fuel, leading to coking deposits under the auto-oxidation and pyrolysis mechanisms.In the results reported in this study, physical methods such as gravimetric measurements were used to obtain the deposits, while UV/VIS absorption, and GC/MS were used to study chemical changes in fuel composition and their relation with coking deposits. Thermal depositions between 16 and 46 ?g/cm2 were measured at the tubes after 3 hours of testing, finding no significant differences between the baseline Jet-A and the renewable fuels blends, even when sulfur levels, which are linked to deposits formation, were lower for the renewable fuels. Fuel bulk constituents, such as paraffins and cycloalkanes, under thermal stressing and catalytic influence of the tube metals cracked into reactive intermediates leading to surface deposits formation, like aromatic compounds. These compounds were identified by the shift towards longer excitation wavelengths of the UV-Vis absorption measurements on stressed fuels.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004513, ucf:49271
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004513
-
-
Title
-
ANALYSIS AND OPTIMIZATION OF A SOLAR THERMAL COLLECTOR WITH INTEGRATED STORAGE.
-
Creator
-
Bonadies, Monica, Kapat, Jay, University of Central Florida
-
Abstract / Description
-
Solar energy, a topic popular in the United States during the oil embargo of the 1970ÃÂ's, has become a relevant topic once more with the current focus on reducing greenhouse emissions. Solar thermal energy in particular has become popular as it uses existing steam turbine technology to produce electricity, with the benefit of using solar energy to produce steam rather than coal or nuclear heat sources. Solar thermal can also be used at lower temperatures to heat water...
Show moreSolar energy, a topic popular in the United States during the oil embargo of the 1970ÃÂ's, has become a relevant topic once more with the current focus on reducing greenhouse emissions. Solar thermal energy in particular has become popular as it uses existing steam turbine technology to produce electricity, with the benefit of using solar energy to produce steam rather than coal or nuclear heat sources. Solar thermal can also be used at lower temperatures to heat water for pools or for residential use. While this energy source has its benefits, it has the problem of being opportunistic ÃÂ the energy must be used as it is captured. With the integration of storage, a solar thermal system becomes more viable for use. In this work, a low temperature (50-70o C) thermal storage unit with a solar thermal collector is experimentally run then studied using both analytical and numerical methods. With these methods, suggestions for future developments of the storage unit are made. The prototype collector and storage combination tested worked best during the winter months, when there was low humidity. Furthermore, the heat exchanger design within the storage unit was found to work well for charging (heating) the unit, but not for discharging the storage to heat water. The best modeling method for the storage unit was the use of FLUENT, which would allow for the suggested changes to the prototype to be simulated before the next prototype was constructed.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003260, ucf:48548
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003260
-
-
Title
-
Control Based Soft Switching Three-phase Micro-inverter: Efficiency and Power Density Optimization.
-
Creator
-
Amirahmadi, Ahmadreza, Batarseh, Issa, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Xinzhang, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
In the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly...
Show moreIn the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly in the form of single-phase grid connected and they aim at the residential and commercial rooftop applications. It would be advantageous to extend the micro-inverter concept to large size PV installations such as MW-class solar farms where three-phase AC connections are used.The relatively high cost of the three-phase micro-inverter is the biggest barrier to its large scale deployment. Increasing the switching frequency may be the best way to reduce cost by shrinking the size of reactive components and heat-sink. However, this approach could cause conversion efficiency to drop dramatically without employing soft switching techniques or using costly new devices.This dissertation presents a new zero voltage switching control method that is suitable for low power applications such as three-phase micro-inverters. The proposed hybrid boundary conduction mode (BCM) current control method increases the efficiency and power density of the micro-inverters and features both reduced number of components and easy digital implementation. Zero voltage switching is achieved by controlling the inductor current bi-directional in every switching cycle and results in lower switching losses, higher operating frequency, and reduced size and cost of passive components, especially magnetic cores. Some practical aspects of hybrid control implementation such as dead-time insertion can degrade the performance of the micro-inverter. A dead-time compensation method that improves the performance of hybrid BCM current control by decreasing the output current THD and reducing the zero crossing distortion is presented.Different BCM ZVS current control modulation schemes are compared based on power losses breakdown, switching frequency range, and current quality. Compared to continuous conduction mode (CCM) current control, BCM ZVS control decreases MOSFET switching losses and filter inductor conduction losses but increases MOSFET conduction losses and inductor core losses. Based on the loss analysis, a dual-mode current modulation method combining ZVS and zero current switching (ZCS) schemes is proposed to improve the efficiency of the micro-inverter.Finally, a method of maintaining high power conversion efficiency across the entire load range of the three-phase micro-inverter is proposed. The proposed control method substantially increases the conversion efficiency at light loads by minimizing switching losses of semiconductor devices as well as core losses of magnetic components. This is accomplished by entering a phase skipping operating mode wherein two phases of an inverter are disabled and three inverters are combined to form a new three-phase system with minimal grid imbalance. A 400W prototype of a three-phase micro-inverter and its hybrid control system have been designed and tested under different conditions to verify the effectiveness of the proposed controller, current modulation scheme, and light load efficiency enhancement method.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005125, ucf:50703
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005125
-
-
Title
-
Modeling and fault detection in DC side of Photovoltaic Arrays.
-
Creator
-
Akram, Mohd, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
Fault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to...
Show moreFault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to detect and clear. This paper deals with the modeling, detection and classification of these types of DC faults. It is essential to be able to simulate the PV characteristics and faults through software. In this thesis a comprehensive literature survey of fault detection methods for DC side of a PV system is presented. The disparities in the techniques employed for fault detection are studied . A new method for modeling the PV systems information only from manufacturers datasheet using both the Normal Operating Cell temperature conditions (NOCT) and Standard Operating Test Conditions (STC) conditions is then proposed.The input parameters for modeling the system are Isc,Voc,Impp,Vmpp and the temperature coefficients of Isc and Voc for both STC and NOCT conditions. The model is able to analyze the variations of PV parameters such as ideality factor, Series resistance, thermal voltage and Band gap energy of the PV module with temperature. Finally a novel intelligent method based on Probabilistic Neural Network for fault detection and classification for PV farm with string inverter technology is proposed.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005293, ucf:50571
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005293
-
-
Title
-
Analysis, Design and Efficiency Optimization of Power Converters for Renewable Energy Applications.
-
Creator
-
Chen, Xi, Batarseh, Issa, Zhou, Qun, Mikhael, Wasfy, Sun, Wei, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
DC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with...
Show moreDC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with the applications where the isolation is required, either these topologies should be modified, or alternative topologies are needed. Among various isolated DC-DC converters, the LLC resonant converter is an attractive selection due to its soft switching, isolation, wide gain range, high reliability, high power density and high conversion efficiency.In low power applications, such as battery chargers and solar microinverters, increasing the switching frequency can reduce the size of passive components and reduce the current ripple and root-mean-square (RMS) current, resulting in higher power density and lower conduction loss. However, switching losses, gate driving loss and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Therefore, switching frequency modulation, components optimization and soft switching techniques have been proposed to overcome these issues and achieve a tradeoff to reach the maximum conversion efficiency.This dissertation can be divided into two categories: the first part is focusing on the well-known non-isolated bidirectional cascaded-buck-boost converter, and the second part is concentrating on the isolated dual-input single resonant tank LLC converter. Several optimization approaches have been presented to improve the efficiency, power density and reliability of the power converters. In the first part, an adaptive switching frequency modulation technique has been proposed based on the precise loss model in this dissertation to increase the efficiency of the cascaded-buck-boost converter. In adaptive switching frequency modulation technique, the optimal switching frequency for the cascaded-buck-boost converter is adaptively selected to achieve the minimum total power loss. In addition, due to the major power losses coming from the inductor, a new low profile nanocrystalline inductor filled with copper foil has been designed to significantly reduce the core loss and winding loss. To further improve the efficiency of the cascaded-buck-boost converter, the adaptive switching frequency modulation technique has been applied on the converter with designed nanocrystalline inductor, in which the peak efficiency of the converter can break the 99% bottleneck.In the second part, a novel dual-input DC-DC converter is developed according to the LLC resonant topology. This design concept minimizes the circuit components by allowing single resonant tank to interface with multiple input sources. Based on different applications, the circuit configuration for the dual-input LLC converter will be a little different. In order to improve the efficiency of the dual-input LLC converter, the semi-active rectifiers have been used on the transformer secondary side to replace the low-side bridge diodes. In this case, higher magnetizing inductance can be selected while maintaining the same voltage gain. Besides, a burst-mode control strategy has been proposed to improve the light load and very light load efficiency of the dual- input LLC converter. This control strategy is able to be readily implemented on any power converter since it can be achieved directly through firmware and no circuit modification is needed in implementation of this strategy.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007612, ucf:52531
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007612
-
-
Title
-
MAXIMUM ENERGY HARVESTING CONTROL FOROSCILLATING ENERGY HARVESTING SYSTEMS.
-
Creator
-
Elmes, John, Batarseh, Issa, University of Central Florida
-
Abstract / Description
-
This thesis presents an optimal method of designing and controlling an oscillating energy harvesting system. Many new and emerging energy harvesting systems, such as the energy harvesting backpack and ocean wave energy harvesting, capture energy normally expelled through mechanical interactions. Often the nature of the system indicates slow system time constants and unsteady AC voltages. This paper reveals a method for achieving maximum energy harvesting from such sources with fast...
Show moreThis thesis presents an optimal method of designing and controlling an oscillating energy harvesting system. Many new and emerging energy harvesting systems, such as the energy harvesting backpack and ocean wave energy harvesting, capture energy normally expelled through mechanical interactions. Often the nature of the system indicates slow system time constants and unsteady AC voltages. This paper reveals a method for achieving maximum energy harvesting from such sources with fast determination of the optimal operating condition. An energy harvesting backpack, which captures energy from the interaction between the user and the spring decoupled load, is presented in this paper. The new control strategy, maximum energy harvesting control (MEHC), is developed and applied to the energy harvesting backpack system to evaluate the improvement of the MEHC over the basic maximum power point tracking algorithm.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001822, ucf:47345
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001822
-
-
Title
-
Investigating New Guaiazulenes and Diketopyrropyrroles for Photonic Applications.
-
Creator
-
Ghazvini Zadeh, Ebrahim, Belfield, Kevin, Campiglia, Andres, Yuan, Yu, Zou, Shengli, Cheng, Zixi, University of Central Florida
-
Abstract / Description
-
?-Conjugated systems have been the focus of study in recent years in order to understand their charge transport and optical properties for use in organic electronic devices, fluorescence bioimaging, sensors, and 3D optical data storage (ODS), among others. As a result, several molecular building blocks have been designed, allowing new frontiers to be realized. While various successful building blocks have been fine-tuned at both the electronic and molecular structure level to provide advanced...
Show more?-Conjugated systems have been the focus of study in recent years in order to understand their charge transport and optical properties for use in organic electronic devices, fluorescence bioimaging, sensors, and 3D optical data storage (ODS), among others. As a result, several molecular building blocks have been designed, allowing new frontiers to be realized. While various successful building blocks have been fine-tuned at both the electronic and molecular structure level to provide advanced photophysical and optoelectronic characteristics, the azulene framework has been under-appreciated despite its unique electronic and optical properties. Among several attributes, azulenes are vibrant blue naturally occurring hydrocarbons that exhibit large dipolar character, coupled with stimuli-responsive behavior in acidic environments. Additionally, the non-toxic nature and the accompanying eco-friendly feature of some azulenes, namely guaiazulene, may set the stage to further explore a more (")green(") route towards photonic and conductive materials.The first part of this dissertation focuses on exploiting guaiazulene as a natural building block for the synthesis of chromophores with varying stimuli-responsiveness. Results described in Chapter 1 show that extending the conjugation of guaiazulene through its seven-membered ring methyl group with aromatic substituents dramatically impacts the optical properties of the guaiazulenium carbocation. Study of these ?(-)stabilized tropilium ions enabled establishing photophysical structure-property trends for guaiazulene-terminated ?-conjugated analogs under acidic conditions, including absorption, emission, quantum yield, and optical band gap patterns. These results were exploited in the design of a photosensitive polymeric system with potential application in the field of three dimensional (3D) optical data storage (ODS).Chapter 2 describes the use of guaiazulene reactive sites (C-3 and C-4 methyl group) to generate a series of cyclopenta[ef]heptalenes that exhibit strong stimuli-responsive behavior. The approach presents a versatile route that allows for various substrates to be incorporated into the resulting cyclopenta[ef]heptalenes, especially after optimization that led to devising a one-pot reaction toward such tricyclic systems. Examining the UV-vis absorption profiles in neutral and acidic media showed that the extension of conjugation at C(4) of the cyclopenta[ef]heptalene skeleton results in longer absorption maxima and smaller optical energy gaps. Additionally, it was concluded that these systems act as sensitizers of a UV-activated ((<) 300 nm) photoacid generator (PAG), via intermolecular photoinduced electron transfer (PeT), upon which the PAG undergoes photodecomposition resulting in the generation of acid.In a related study, the guaiazulene methyl group at C-4 was employed to study the linear and nonlinear optical properties of 4-styrylguaiazulenes, having the same ?(-)donor with varying ?-spacer. It was realized that the conjugation length correlates with the extent of bathochromic shift of the protonated species. On the other hand, a trend of decreasing quantum yield was established for this set of 4-styrylguaiazulenes, which can be explained by the increasingly higher degree of flexibility.The second part of this dissertation presents a comprehensive investigation of the linear photophysical, photochemical, and nonlinear optical properties of diketopyrrolopyrrole (DPP)-based derivatives, including two-photon absorption (2PA), femtosecond transient absorption, stimulated emission spectroscopy, and superfluorescence phenomena. The synthetic feasibility, ease of modification, outstanding robustness, and attractive spectroscopic properties of DPPs have motivated their study for fluorescence microscopy applications, concluding that the prepared DPP's are potentially suitable chromophores for high resolution stimulated emission depletion (STED) microscopy.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006034, ucf:50986
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006034
-
-
Title
-
The Tragic City: Black Rebellion and the Struggle for Freedom in Miami, 1945-1990.
-
Creator
-
Dossie, Porsha, Lester, Connie, French, Scot, Walker, Ezekiel, University of Central Florida
-
Abstract / Description
-
This thesis examines the creation of South Florida's tri-ethnic racial hierarchy during the postwar period, from 1945-1990. This racial hierarchy, coupled with discriminatory housing practices and police violence, created the necessary conditions for Dade County's first deadly uprising in 1968. Following the acquittal of several officers charged in the killing of an unarmed black businessman, a second uprising in 1980 culminated in three days and three nights of violent street warfare between...
Show moreThis thesis examines the creation of South Florida's tri-ethnic racial hierarchy during the postwar period, from 1945-1990. This racial hierarchy, coupled with discriminatory housing practices and police violence, created the necessary conditions for Dade County's first deadly uprising in 1968. Following the acquittal of several officers charged in the killing of an unarmed black businessman, a second uprising in 1980 culminated in three days and three nights of violent street warfare between law enforcement and black residents in Miami's northwest Liberty City neighborhood. The presence of state sanctioned violence at the hands of police in Liberty City set the stage for the city's second uprising. Further, the oftentimes murky and ambiguous racial divide that made people of color both comrades and rivals within Miami's larger power structure resulted in an Anglo-Cuban alliance by the late 1960s and early 1970s that only worsened racial tensions, especially among the city's ethnically diverse, English speaking black population. This thesis project uses a socio-historical framework to investigate how race and immigration, police brutality, and federal housing policy created a climate in which one of Miami's most vulnerable populations resorted to collective violence.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007173, ucf:52269
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007173