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ABSTRACT 

 

Alzheimer’s disease (AD) is an age progressive neurodegenerative brain disorder, affecting 37 

million people worldwide. Cleavage of amyloid precursor protein by β- and γ-secretase produces 

the amyloid-beta (Aβ) protein, which significantly contributes to AD pathogenesis. The Aβ 

aggregates, formed at the surface of neurons and intracellularly, cause neurotoxicity and decrease 

synaptic function. Inhibiting or degrading Aβ accumulation is a key goal for development of new 

AD treatments. Evidence shows that human Myelin Basic Protein (MBP) binds to and degrades 

Aβ thereby, preventing cytotoxicity. A potential method for oral drug delivery that will allow 

plant-derived bioencapsulated MBP to pass through intestinal epithelium and bypass denaturing 

stomach acidity is quite novel. Cholera Toxin B subunit (CTB), when fused with MBP, can serve 

as a vehicle for oral delivery of this chloroplast expressed therapeutic protein into the systemic 

circulation. Within chloroplast, CTB forms a pentameric structure that binds to GM1 ganglioside 

receptors, allowing receptor-mediated endocytosis. In order to investigate protein entry through 

neuronal GM1 receptors, we first created CTB fused to the green fluorescent protein (GFP). 

Incubation of this fusion protein with human neuroblastoma cells resulted in GFP entry into 

these cells whereas GFP alone was unable to enter. Similarly, co-incubation of CTB-MBP, via 

neuronal GM1 binding, allowed MBP to reduce neurotoxicity of Aβ42 treated cells by 37.1%. 

Delivery of CTB-MBP through GM1 receptor mediated binding should therefore facilitate oral 

administration, storage, heat stability and low cost AD treatment. 
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CHAPTER ONE: INTRODUCTION AND BACKGROUND 

 
 
Alzheimer’s Disease and Pathogenesis  
 
 Alzheimer’s disease (AD) is a neurodegenerative brain disorder, which becomes 

progressively worse with age and is eventually fatal. Over 37 million people worldwide suffer 

from AD. In 2010, AD had a global cost of over 600 billion dollars (1). Individuals who suffer 

from AD experience reduced cognitive function, including reductions in memory and intellectual 

activity. Currently there is no cure for AD. The medications prescribed for AD patients only help 

partially with symptoms not the cause. These medications target the enhancement of chemical 

messengers involved in memory, synaptic signaling and learning. Medications that stop the 

damage to brain cells have not yet been developed.  

Cleavage of the amyloid precursor protein (APP) by β- and γ-secretase, produces the 

amyloid-beta (Aβ) protein and excess accumulation of this protein in the brain is a significant 

contributor to the pathogenesis of AD (2, 3). Currently, the precise etiology of AD is 

inconclusive, but substantial evidence shows that Aβ plays a key role in the development of the 

disease (4-6). The proteolysis of APP produces Aβ peptides comprising of 39 to 43 amino acid 

residues. Among these Aβ peptides, Aβ42 significantly contributes to the initiation of Aβ 

aggregates, resulting in the formation of insoluble oligomers and eventually fibril structures (7, 

8). The oligomeric structures and fibril aggregates of Aβ formed at neuronal membranes and 

synaptic endings predominantly cause neurotoxicity, decreased synaptic function and the 

progression of AD (9). Inhibiting and degrading Aβ aggregate formation have been considered 
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as key approaches for the development of new effective treatments for this neurodegenerative 

disease.   

 

Myelin Basic Protein 

The human Myelin Basic Protein (MBP, molecular weight 18.5 kDa) has been shown to 

bind to Aβ and prevent fibril formation (10). MBP is a major constituent of myelin sheaths of the 

central nervous system. The MBP purified from a bacterial recombinant expression system or 

from human brain effectively inhibits Aβ aggregation (10), signifying that the activity is not 

dependent on post-translational modification.  It was important to determine if post-translational 

modification is crucial for the inhibitory effects of MBP on Aβ because MBP undergoes various 

post translational modifications in the brain. A recent study showed that the Aβ binding site on 

MBP is within the first 64 residues of the N-terminal domain (10). Evidence shows that MBP 

can degrade Aβ peptides and fibrillar formations (11). Moreover, MBP is able to inhibit 

cytotoxicity caused by Aβ in a dose dependent manner (12). Previous studies have shown the 

ability of MBP to degrade neurotoxic Aβ (11). However, a potential physiological method for 

oral drug delivery that will allow MBP to pass through the intestinal epithelium protected from 

acids and enzymes in the stomach is quite novel. In this study, we focus on developing an oral 

delivery method of MBP bioencapsulated in plant cells. 

 
 
Oral Delivery of Chloroplast Expressed Therapeutic Proteins 
 

Currently, the cost of many prescription drugs and medical care are not affordable.  Also, 

drug delivery and availability in developing countries is a major challenge because of cold chain 
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logistics as well as the need for trained individuals to administer the drug. Production of 

therapeutic proteins in plants enables oral delivery of biopharmaceutical proteins, mass 

production at a low cost, transportation without cold conditions, long-term storage, heat stability, 

and in vitro processing. Protection from the low pH of the stomach can be accomplished by 

bioencapsulation of the therapeutic protein in plant cells (13, 14). Cholera Toxin B subunit 

(CTB) (~11 kDa) has been used as a vehicle to get plant expressed therapeutic proteins into the 

systemic circulation via oral delivery (15). By creating a fusion protein of the therapeutic protein 

and CTB, the chimeric protein passes through the intestinal mucosal wall into the circulatory 

system (15, 16). This occurs because Ganglioside M1 (GM1) receptors on intestinal epithelial 

cells allow receptor-mediated endocytosis due to the binding ability of CTB to the GM1 receptor 

(16). Within chloroplast, CTB forms a pentameric structure, which binds to these GM1 receptors 

(16). In this study, we used CTB fused to MBP. A furin cleavage site along with a glycine 

proline glycine proline (GPGP) hinge region was engineered between CTB and MBP. The GPGP 

hinge prevents steric hindrance whereas furin cleavage facilitates release of the therapeutic 

proteins once they pass through intestinal epithelial cells (15, 17). Furin is a ubiquitous protease 

and it allows separation of the fusion proteins. One hundred percent cleavage is not guaranteed 

due to the turn over rate of furin. The quick turnover rate of intestinal epithelial cells and the 

recycling of GM1 receptors provide continual function (18, 19). Studies show that the blood-

brain barrier has compromised integrity in Alzheimer disease patients (20, 21); therefore, this 

may allow therapeutic CTB-MBP to access the brain more easily. Also, GM1 receptors of the 

blood-brain barrier caveolae are a potential target for transportation of therapies to the brain (22, 

23). For future studies, CTB-MBP fusion protein without a furin cleavage site will be beneficial 
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as it has more potential to reach GM1 receptors of the brain. The intestinal GM1 will allow CTB-

MBP to enter the circulatory system and then travel to GM1 receptors of the brain allowing MBP 

greater access to Aβ accumulated in neurons of the AD brain.   

 
 
Ganglioside M1 of the Nervous System 
 

One of the functions of gangliosides is to act as cell surface receptors (24).  Gangliosides 

are predominately found in the brain at synaptic endings and on membranes (25). Also, 

gangliosides are enriched in lipid raft domains, which are necessary for neuronal function and 

cell signaling (1). Lipid rafts play a role in APP amyloidgenic processing and Aβ aggregation 

(26). Evidence shows that lipid raft disruption promotes Aβ aggregation and that gangliosides, 

predominately GM1, in lipid rafts contribute to accelerating Aβ plaque generation (27). GM1 is 

involved in the regulation of APP processing and is able to increase Aβ42 in a dose dependent 

manner (28). GM1 binds Aβ and promotes further aggregation of Aβ (1, 29). Lipid rafts are 

significantly abundant in neurons of the hippocampus of the brain, which is the brain’s memory 

center. Lipid raft disturbance may contribute to the build up of toxic Aβ oligomers on the 

hippocampal neurons of Alzheimer’s disease patients (30). The binding of CTB-MBP to GM1 of 

these lipid rafts may prevent progressive Aβ aggregation through a competitive binding 

mechanism. 

Studies show that CTB can bind to GM1 on the surface of neurons and enter through 

endocytosis. Once CTB is taken into the neuron, it disperses in the cytoplasm, axoplasm and the 

dendrites (31, 32).  In this study, we show that CTB facilitates entry of fused protein into neurons 

as well. We confirmed the presence of GM1 receptors on human neuronal cells by using plant-
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derived CTB-Green Fluorescent Protein (GFP) fusion protein created via chloroplast genetic 

engineering. The presence of GM1 on neurons should facilitate receptor-medicated delivery of 

MBP to the site of Aβ accumulation at neuronal cell membranes as well as to intracellular Aβ. 

Therefore, co-incubation of CTB-MBP, via neuronal GM1 binding, should allow MBP to reduce 

the neurotoxicity of Aβ42 treated cells.    

 
 
Intracellular Amyloid-beta, Phospho-Tau Protein and Future Applications 
 

Aβ accumulation also occurs intracellularly. In addition to accumulation on the cell 

surface, studies show that Aβ is generated in the golgi, endosomal/ lysosomal system and the 

endoplasmic reticulum (33, 34). Also, the mitochondria are sites of Aβ accumulation; therefore, 

the functioning of the mitochondria of Alzheimer’s Disease neurons is impaired (35). Due to the 

fact that brain cells require abundant energy, compromised mitochondria result in neurons 

loosing their functioning abilities. Another pathological hallmark of AD is the phospho-Tau 

protein, which is contained in intracellular neurofibrillary tangles (36). Along with MBP 

targeting extracellular Aβ, neuronal GM1 can potentially be used to get CTB-MBP into neurons 

for use in future experimentation that targets Aβ that is generated inside neurons.  

 
 
Lactate Dehydrogenase Cytotoxicity Assay 
 

The lactate dehydrogenase (LDH) cytotoxicity assay is used to assess cell death by 

measuring the amount of LDH released into the cell culture medium. When the cell membrane is 

compromised due to cell lysis or damage, the soluble cytosolic LDH enzyme is released from the 

cell. Therefore, the amount of LDH released into the cell culture medium is proportional to the 
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amount of cell death (37). The mechanism behind this assay consists of two reactions. First, 

LDH catalyzes the reaction in which lactate is oxidized to pyruvate and NAD+ is reduced, 

producing NADH and H+. In the second reaction, diaphorase catalyzes the reduction of a 

tetrazolium salt by using the NADH and H+ produced in the first reaction. When the tetrazolium 

salt is reduced, it forms colored formazan. The absorbance of formazan can be detected at a 

wavelength of 490 nm. Therefore, the absorbance at 490 nm detected due to formazan is 

proportional to the amount of LDH released from the cells as a result of cytotoxicity.  

 
 
Significance of the Research 
 

Research focusing on amyloid-β aggregate inhibition, degradation and reducing its toxic 

effects using MBP on human neurons in vitro may significantly advance the development of 

novel therapeutics to treat Alzheimer’s disease. This study shows that plant-derived CTB-MBP 

is functional in an in vitro assay; thereby, supporting parallel in vivo work. This research opens 

the door for a new way to treat Alzheimer’s disease using plant-based CTB-MBP via oral 

delivery. Assessing the ability of human neurons to bind or uptake chloroplast derived CTB-GFP 

via GM1 receptors can serve as a model of the targeted delivery method for the CTB-MBP 

protein and its ability to reach the Aβ affected areas of neurons. Also, this study can lead to 

future research, which targets the destruction of intracellular Aβ.  

 
 
Objectives 
 
 The first aim of this study is to evaluate if CTB fused with GFP can bind to GM1 present 

on the neuronal cell surface and enter the cell, thus demonstrating the mechanism of how CTB 
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fused to therapeutic MBP could enter neurons and target intracellular Aβ. The second aim of this 

study is to evaluate if plant-derived human MBP fused with CTB reduces the neurotoxic effects 

of amyloid-beta in order to develop an alternative and cost effective means to treat Alzheimer’s 

disease.  

 
 
Prior Work Performed in Dr. Daniell’s Laboratory 
 

Transplastomic CTB-MBP tobacco plants were generated using gene gun delivery 

system. Tobacco leaves were bombarded with gold particles coated with chloroplast 

transformation vector containing CTB-hMBP fusion gene expression cassette. Using Southern 

blot analysis, the transformed plants were tested for transgene integration and homoplasmy. 

Further, immunoblot analysis confirmed transgene expression. Time and age specific leaves 

from transplastomic plants were harvested and immunoblotting using a CTB primary antibody 

was performed. Purification of CTB-MBP was challenging. The purity of purified protein was 

33.1%.  Therefore, the concentration of CTB-MBP is 33.1 ng/µl.  Enrichment of CTB-MBP was 

accomplished by nickel column purification and was confirmed by western blots. Also, 

transplastomic CTB-GFP tobacco plants were generated. For quantification of CTB-GFP, 

densitometry was used. The concentration of crude CTB-GFP was 17.5 ng/µl. To confirm 

functionality, the ability of the chloroplast derived CTB-MBP fusion protein to bind to the GM1 

receptor was established by a GM1 ELISA assay. Purified CTB and chloroplast derived CTB-

MBP were compared and results showed that they have the same GM1 binding capability. 
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CHAPTER TWO: METHODS 

 
 
Cell Culture 
 
 M17 human neuroblastoma cells were cultured in Opti-MEM® I Reduced Serum Media 

supplemented with 10% FBS, 1% Penicillin/Streptomycin in a 37°C incubator with full humidity 

and 5% CO2.  For all protein incubation experiments, the treatment media consisted of only Opti-

MEM® I reduced serum media (2% serum) excluding both FBS and Penicillin/Streptomycin.  

For experimentation, the neuroblastoma cells were plated in a 96 well plate at about 104 cells per 

well.  Treatments were performed when cells were ~70% confluent.   

 
 
CTB-GFP Extraction  
 

The leaf material was harvested from plants in the green house and observed under a UV 

lamp for significant GFP fluorescence. The substantially fluorescing leaves were selected and 

rinsed with water.  The chosen leaves were ground using liquid nitrogen to make a fine powder.  

Three hundred microliters of cellgro Phosphate-Buffered Saline, 1X (PBS) was added to 100 

mg of finely ground plant leaf material. The mixture was then vortexed for 5 minutes at 4°C.  

After vortexing, the samples were sonicated for 5 seconds three times with a 30 second break in 

between. The material was then centrifuged at 4°C for 10 minutes. The supernatant was collected 

and recentrifuged for 10 minutes. The supernatant was collected again and filtered through a 0.45 

and 0.2 micron filter consecutively to remove plant debris and to avoid contamination. The 

sample was kept on ice until used.   
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Determining the Ability of Plant Derived CTB-GFP to Bind to GM1 Receptors on 

Human Neuroblastoma Cells  

  In order to investigate the presence of GM1 receptors on the neuronal surface of the M17 

human neuroblastoma cell line and to determine if plant derived CTB fusion proteins could bind 

and enter the neuronal cell via the GM1 receptors, we used plant derived CTB-GFP. Extracted 

CTB-GFP and all control proteins were incubated with human neuroblastoma cells for 24 hours. 

The amount of CTB-GFP and control proteins added to each well was 350 ng. All treatments 

were done in triplicate. For negative controls, cells with no treatment, plant derived CTB-MBP, 

commercial GFP, Wild Type (WT) LAMD (low-nicotine tobacco) plant material, and 

commercial CTB were used. After the 24 hour incubation, cells were washed twice with PBS. 

Data was collected using microscopy. Cells in all wells were photographed using identical 

microscope settings (20X magnification and 4s GFP filter exposure). Data pictures were 

captured using a Nikon Eclipse TE2000-E microscope and the NIS ELEMENTS Advanced 

Research software.  

  

Localization of CTB-GFP on Human Neuroblastoma Cells and Stage of Cell Cycle 

After confirming the presence of GM1 receptors on M17 Human Neuroblastoma cells 

and determining that CTB is essential for the fusion protein, GFP, to interact with the neuronal 

cell via GM1, it was important to determine where the GFP was localized upon interaction with 

the cell. In order to ensure very healthy cells that were less stressed due to excessive washings 

and aspirations, this follow up experiment was conducted using a 24 well plate.  Cells were 

plated at ~106 cells per well. M17 Human Neurobalstoma cells were incubated with 875ng 
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(23.3nM) CTB-GFP per well in triplicate. After the 24 hour incubation time point, cells were 

washed once with PBS. Data was collected using microscopy. Again, cells in all wells were 

photographed using a 20X magnification and a 4s GFP filter exposure. The same microscope 

stated above was used. 

 
 
Preparation of Amyloid-beta42   
 
 The Beta–Amyloid (1-42) peptide was purchased from AnaSpec. The peptide was 

reconstituted to the final concentration of 1mM using ddH2O and the pH was adjusted to 7.  

Before incubating Aβ42 with M17 human neuroblastoma cells, the Aβ42 was subject to pre-

aggregation in 1X PBS for 16 hours at 37 °C. For the co-incubation of CTB-MBP and Aβ42, 100 

mM NaCl was added to the pre-aggregate Aβ42 to increase aggregation.  Aβ42 aggregation was 

confirmed by immunoblot using an anti Aβ42 antibody. 

 

Cytotoxicity Caused by Aβ42 and Co-incubation of Aβ42 with CTB-MBP 

 The concentration of Aβ42 that is optimally toxic to M17 Human Neuroblastoma cells was 

determined using a LDH cytotoxicity assay. Cytotoxicity was determined by measuring LDH 

release using the CytoTox96® Non-Radioactive Assay (Promega). Before treatment, growth 

media was aspirated from wells and replaced with 20 μM or 40 μM Aβ42 in treatment media. 

The experiment included cells in treatment media only as the negative control. Another set of 

cells in treatment media only contained cells for complete lysis and represented the maximum 

LDH release (100% cytotoxicity) control. All treatments were carried out in triplicates.  After 48 

hours, lysis buffer was added to the maximum LDH release control and left to incubate for 45 
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minutes. After confirmation of complete lysis by microscopy, 50 μl from each well was 

transferred to a new 96 well plate and 50 μl of reaction solution was added. The plate was 

incubated in the dark for 30 minutes and then stop solution (50 μl) was added to each well.  

Absorbance values were determined at 490 nm using a plate reader. Percent cytotoxicity of 

control was calculated according to the equation:  

% Cytotoxicity  = Experimental LDH release (OD490) / Maximum LDH release (OD490)  

 In order to assess the ability of CTB-MBP to reduce the cytotoxicity caused by Aβ42, a co-

incubation experiment was performed. Cell death was assessed using the same LDH cytotoxicity 

assay. Before treatment, growth media was aspirated from the wells then replaced with 40 μM 

Aβ42, 40 μM Aβ42 plus 46.5 nM CTB-MBP, or 40 μM Aβ42 plus 93 nM CTB-MBP in 

treatment media. The CTB-MBP protein was filtered through a 0.22 micron filter before use to 

avoid contamination. The same negative control and maximum LDH release control used in the 

cytotoxicity experiment were used for the co-incubation experiment. All treatments were done in 

triplicates. The relative cytotoxicity was determined by the assay described above. The only 

procedural difference in the co-incubation experiment was centrifugation of the plate at 200 RCF 

for 4 minutes before 50 μl of supernatant from each well was transferred to a new 96 well plate. 

Centrifugation was performed in order to sediment any cellular debris in the culture media to 

enhance the accuracy of absorbance due to LDH. 
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CHAPTER THREE: RESULTS 

 

Plant Derived CTB-GFP Binds to GM1 Receptors on Human Neurobalstoma Cells 

 To investigate the presence of GM1 receptors on M17 Human Neuroblastoma cells and 

to determine the ability of the CTB-GFP fusion protein to bind to neuronal GM1 receptors, cells 

were incubated with CTB-GFP or controls for 24 hours. GFP fluorescence was observed in 

human neuroblastoma cells after incubation with CTB-GFP (Figure 1). When the cells were 

incubated with commercial GFP alone or other controls under the same conditions, no GFP 

fluorescence was observed.  These results show that CTB binding to neuronal GM1 is essential 

for uptake of GFP by human neuroblastoma cells. 
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Figure 1.  Chloroplast Derived CTB-GFP Binds to GM1 Receptors on Human Neuroblastoma Cells.  
GFP fluorescence from M17 Human Neuroblastoma cells was analyzed by fluoresense microscopy. Cells 
were incubated with equal amounts of controls or CTB-GFP. All pictures were taken at a magnification of 
20X and the GFP filter was set for a 4s exposure for all samples. Panel A shows commercial controls 
including GFP alone.  Panel B shows plant derived controls and CTB-GFP. 
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Localization of CTB-GFP on Human Neuroblastoma Cells and Stage of Cell Cycle 
 

After confirming the presence of GM1 receptors on M17 Human Neuroblastoma Cells 

and determining that CTB is essential as a carrier to deliver GFP into the neuronal cell via GM1, 

location of GFP fluorescence was examined. Neuroblastoma cells were incubated with CTB-

GFP for 24 hours under less harsh conditions to ensure that the cells bound CTB-GFP without 

being stressed or having a compromised membrane. GFP fluorescence was observed on the cell 

surface or intracellularly depending on the stage of the cell’s life cycle (Figure 2). These results 

show that through binding to the neuronal GM1 receptor, human neuroblastoma cells can uptake 

the CTB-GFP fusion protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

 

  

  

  

GFP Filter Bright Field and GFP Filter Merged 

Figure 2.  Localization of CTB-GFP on Human Neuroblastoma Cells and Stage of Cell Cycle.  M17 
Human Neuroblastoma cells were incubated with chloroplast derived CTB-GFP for 24 hours. Pictures were 
taken at a magnification of 20X under the GFP filter for 4s. The boxes show enlarged images of the 
indicated region and the location of GFP fluorescence on the surface or within neurons. Arrows indicate 
CTB-GFP binding on the neuron surface. Some cells show internalized GFP. 
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Cytotoxicity Caused by Aβ42 

 In order to determine the optimal concentration of Amyloid-beta42 that has toxic effects 

on M17 Human Neuroblastoma cells, cells were incubated with different concentrations of Aβ42 

for 48 hours (Figure 3). Aβ42 was pre-aggregated for 16 hours at 37 °C before treatment of cells.  

A concentration of 40 μM Aβ42 and an incubation time of 48 hours were selected as appropriate 

experimental conditions for the further co-incubation experiments with CTB-MBP. Further 

investigation was done before the co-incubation experiment, as a 50% cell death mark was not 

reached. It was determined that 100 mM NaCl should be added to the pre-aggregate Aβ42 

material to enhance aggregate formation before treatment with cells. 

 

 

 
 
 

Figure 3.  Cytotoxicity of Human Neuroblastoma Cells Caused by Aβ42.  Percent cytotoxicity was 
determined by comparison to a 100% LDH release (lysed) control, which had an average absorbance of 
0.835.  Data are shown as mean ± S.D. of values obtained from triplicate experiments. 
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Reduction of Neurotoxicity Caused by Aβ42 via Co-incubation with CTB-MBP 
 
 The ability of plant-derived CTB-MBP to reduce cytotoxicity caused by Aβ42 was 

assessed by co-incubation of Aβ42 and CTB-MBP with human Neuroblastoma cells. Plant 

derived CTB-MBP was co-incubated with the previously determined optimal toxic concentration 

and conditions of Aβ42 for 48 hours. As shown in Figure 4, the cytotoxic effect of Aβ42 was 

reduced by 37.1% when CTB-MBP was co-incubated with Aβ42 treated human neuroblastoma 

cells.  

 

  

 

 

 ** 

Figure 4.  Chloroplast Expressed CTB-MBP Reduces the Neurotoxic effect of Aβ42.  M17 
Human Neuroblastoma cells were incubated with 40μM Aβ42 with or without 1 μM CTB-MBP for 
48 hours. Percent cytotoxicity was determined by comparison to a 100% LDH release (lysed) 
control, which had an average absorbance of 0.588. Data are shown as mean ± S.D. of values 
obtained from triplicate experiments. **, p < 0.01. The statistically significant difference between 
the groups was calculated using single factor ANOVA. 
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Complete CTB-MBP and Aβ42 Co-incubation Experiment 

 

A     

 

B   
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Figure 5.  Chloroplast Expressed CTB-MBP Reduces the Neurotoxic effect of Aβ42. M17 Human 
Neuroblastoma cells were co-incubated with two different concentrations of CTB-MBP protein and 
cytotoxic concentration of Aβ42. Percent cytotoxicity was determined by comparison to a 100% LDH 
release (lysed) control, which had an average absorbance of 0.588. Data are shown as mean ± S.D. of values 
obtained from triplicate experiments. A. Cytotoxicity represented as percent of control. B. Cytotoxicity 
represented as percent of control and the negative control (only cells with treatment media, no Aβ42 or 
CTB-MBP) subtracted from all values.  C.  Cytotoxicity represented as absorbance at 490nm. 
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CHAPTER FOUR: DISCUSSION 

 

Ligand–receptor interaction on the cell surface is an essential mechanism to allow protein 

entry into cells. In this study, we showed the binding activity of CTB to GM1 receptors present 

on M17 human neuroblastoma cells and the invagination of a CTB fusion protein into the 

neuronal cell using fluorescent microscopy analysis. GM1 is known to serve as a receptor for 

pentameric CTB and has been extensively studied in regard to its interaction on intestinal 

epithelial cells (16). However, investigations concerning CTB fusion protein entry into brain 

cells are limited. The targeted delivery of therapeutic proteins into neurons via receptor-ligand 

(GM1-CTB) interaction should facilitate development of novel Alzheimer’s disease treatments, 

which target the intracellular pathological hallmarks of the disease, amyloid-beta and phospho-

tau. Also, this concept can be utilized in treating other neurological diseases, such as Parkinson’s 

and Huntington’s disease.  

To investigate the interaction of CTB fused protein with neuronal GM1, we used the M17 

human neuroblastoma cell line. Strong GFP fluorescence was observed after the incubation of 

CTB-GFP and the cells when compared to none after incubation with GFP alone. The GFP 

fluorescent signals were detected around cell membrane and intracellularly demonstrating that 

CTB-GFP can enter the cell after the binding of CTB to GM1. Hence, CTB is necessary for GFP 

entry into neuronal cells via CTB-GM1 interaction. Fluorescence microscopy data shows that the 

location of GFP in human neuroblastoma cells depends on the cell cycle stage. The binding 

ability of CTB fusion proteins to neuronal GM1 on the cell surface and uptake of the fusion 
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proteins into the cell can serve as a targeted delivery route for treatments against Alzheimer’s 

disease.  

MBP has been shown to degrade and inhibit Aβ assembly (10, 11). Thereby, CTB-MBP 

could be used as a therapy to reduce the neurotoxicity caused by Aβ and inhibit the progression 

of neurodegeneration. Once MBP enters the neuron, via the mechanism of CTB binding to GM1, 

it can reach intracellular Aβ and prevent aggregate formation as well as degrade the toxic 

accumulations.   

 GM1 of the brain should allow CTB to direct therapeutic MBP to extracellular Aβ 

plaques, which inhibit synaptic function and contribute to neuron death. MBP can then protect 

neurons from damage by degrading Aβ formations as well as inhibiting further aggregation. In 

this study, neurotoxicity caused by Aβ42 was simulated in vitro. We demonstrated that Aβ42 is 

toxic to human neuroblastoma cells and that neurotoxicity occurs in a concentration dependent 

manner. After optimization, it was established that pre-aggregated 40 μM Aβ42 can cause 

significant human neuroblastoma cytotoxicity. The cell death caused by Aβ42 was inhibited 

using plant derived CTB-MBP. These results are consistent with a previous study that showed 

MBP caused increased cell viability of Aβ42 treated rat cortical neurons (7). Co-incubation of 

the determined toxic concentration and conditions of pre-aggregated Aβ42 and about 1 μM CTB-

MBP resulted in a 37.1% decrease in human neuroblastoma cell death. Also, increasing 

concentrations of CTB-MBP resulted in increasing reductions of cell death. These results 

indicate that chloroplast expressed CTB-MBP is able to reduce the neurotoxic effects of 

aggregated Aβ42.   
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Reducing and preventing neuron damage caused by amyloid-beta aggregates can lead to 

potential treatments that hinder the progressive nature of the neurodegenerative Alzheimer’s 

disease process. Through chloroplast genetic engineering techniques, CTB-MBP can be 

expressed at higher levels in plants leading to large-scale production at a lower cost.  

Bioencapsulation of the plant derived CTB-MBP may lead to a clinical treatment for 

Alzheimer’s disease that can be delivered orally.    
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