You are here

CHARACTERIZATION OF POLYETHERIMIDE UNDER STATIC, DYNAMIC, AND MULTIPLE IMPACT CONDITIONS

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
The application of polymers in robust engineering designs is on the rise due to their excellent mechanical properties such as high fracture toughness, specific strength, durability, as well as, thermal and chemical resistances. Implementation of some advanced polymeric solids is limited due to the lack of available mechanical properties. In order for these materials to endure strenuous engineering designs it is vital to investigate their response in multiple loading rates and conditions. In this thesis, the mechanical response of polyethermide (PEI) is characterized under quasi-static, high strain rate, and multiple impact conditions. Standard tension, torsion, and compression experiments are performed in order to distinguish the multi-regime response of PEI. The effects of physical ageing and rejuvenation on the quasi-static mechanical response are investigated. The strain softening regime resulting from strain localization is eliminated by thermal and mechanical rejuvenation, and the advantages of these processes are discussed. The dynamic fracture toughness of the material in response to notched impact via Charpy impact test is evaluated. The high strain-rate response of PEI to uniaxial compression is evaluated at rates exceeding 104/s via miniaturized Split Hopkinson Pressure Bar (MSHPB), and compared to the quasi-static case to determine strain-rate sensitivity. The elastic response of the aged material to multiple loading conditions are correlated using the Ramberg-Osgood equation, while the elastoplastic response of rejuvenated PEI is correlated using a both the Ramberg-Osgood equation and a novel model. The strain-rate sensitivity of the strength is found to be nominally bilinear and transition strains are modeled using the Ree-Erying formulation. Finally, multiple impact experiments are performed on PEI using the MSHPB and a model is proposed to quantify damage as a result of collision.
Title: CHARACTERIZATION OF POLYETHERIMIDE UNDER STATIC, DYNAMIC, AND MULTIPLE IMPACT CONDITIONS.
30 views
14 downloads
Name(s): Zuanetti, Bryan, Author
Gordon, Ali, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The application of polymers in robust engineering designs is on the rise due to their excellent mechanical properties such as high fracture toughness, specific strength, durability, as well as, thermal and chemical resistances. Implementation of some advanced polymeric solids is limited due to the lack of available mechanical properties. In order for these materials to endure strenuous engineering designs it is vital to investigate their response in multiple loading rates and conditions. In this thesis, the mechanical response of polyethermide (PEI) is characterized under quasi-static, high strain rate, and multiple impact conditions. Standard tension, torsion, and compression experiments are performed in order to distinguish the multi-regime response of PEI. The effects of physical ageing and rejuvenation on the quasi-static mechanical response are investigated. The strain softening regime resulting from strain localization is eliminated by thermal and mechanical rejuvenation, and the advantages of these processes are discussed. The dynamic fracture toughness of the material in response to notched impact via Charpy impact test is evaluated. The high strain-rate response of PEI to uniaxial compression is evaluated at rates exceeding 104/s via miniaturized Split Hopkinson Pressure Bar (MSHPB), and compared to the quasi-static case to determine strain-rate sensitivity. The elastic response of the aged material to multiple loading conditions are correlated using the Ramberg-Osgood equation, while the elastoplastic response of rejuvenated PEI is correlated using a both the Ramberg-Osgood equation and a novel model. The strain-rate sensitivity of the strength is found to be nominally bilinear and transition strains are modeled using the Ree-Erying formulation. Finally, multiple impact experiments are performed on PEI using the MSHPB and a model is proposed to quantify damage as a result of collision.
Identifier: CFH0004531 (IID), ucf:45166 (fedora)
Note(s): 2013-12-01
B.S.
Engineering and Computer Science, Dept. of Mechanical, Materials and Aerospace Engineering
Bachelors
This record was generated from author submitted information.
Subject(s): dynamic response
strain-rate sensitivity
glassy polymer
kolsky bar
ductility
toughness
thermoplastic
bilinear model
experimental mechanics
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH0004531
Restrictions on Access: campus 2014-12-01
Host Institution: UCF

In Collections