You are here

A LABORATORY SCALE ASSESSMENT OF THE EFFECT OF CHLORINE DIOXIDE PRE-OXIDATION ON DISINFECTION BY-PRODUCT FORMATION FOR TWO SURFACE WATER SUPPLIES

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
Chemical disinfection is the cornerstone of safe drinking water. However, the use of chemical disinfection results in the unintentional formation of disinfection by-products (DBPs), an outcome of reactions between the disinfectant and natural organic matter (NOM) present in the native (raw) water. DBPs are suspected carcinogens, and as such, have been regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA). This document reports the results of a study that investigated the use of chlorine dioxide pre-oxidation for the reduction of DBP precursors, and subsequently, DBP formation potential (FP). To determine the effectiveness of the chlorine dioxide pre-oxidation process, two surface waters were studied: raw water from Lake Claire (Orlando, FL) and raw water from the East Maui Watershed (Makawao, HI). Lake Claire water contains approximately 11-12 mg/L of NOM and 35 mg/L as CaCO3 of alkalinity, while the Maui source water typically ranges between 7-8 mg/L of NOM with 2-10 mg/L as CaCO3 of alkalinity. Two chlorine dioxide doses were investigated (0.75 mg/L and 1.5 mg/L) and compared to a control to quantify the effectiveness of this advanced pre-treatment oxidation process. Water collected at each site was subject to the following treatment process: oxidation, coagulation, flocculation, sedimentation, ultrafiltration, and disinfection with free chlorine. Disinfection by-product formation potential (DBPFP) analysis showed that ClO2 pre-oxidation, in general, increased the 7-day DBPFP of the East Maui water, and decreased the 7-day DBPFP of the Lake Claire source water. For the Lake Claire water at the higher ClO2 dose, total trihalomethanes (TTHM) were decreased by 37 percent and the five regulated haloacetic acids (HAA5) by 23 percent. For the East Maui source water at the higher ClO2 dose, TTHM's were increased by 53 percent and HAA5's by 60 percent. Future research should determine the effect of alkalinity on DBPFP, which could be the reason why chlorine dioxide pre-oxidation caused one water source's DBPFP to decrease and the other to increase.
Title: A LABORATORY SCALE ASSESSMENT OF THE EFFECT OF CHLORINE DIOXIDE PRE-OXIDATION ON DISINFECTION BY-PRODUCT FORMATION FOR TWO SURFACE WATER SUPPLIES.
40 views
21 downloads
Name(s): Rodriguez, Angela, Author
Duranceau, Steven, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Chemical disinfection is the cornerstone of safe drinking water. However, the use of chemical disinfection results in the unintentional formation of disinfection by-products (DBPs), an outcome of reactions between the disinfectant and natural organic matter (NOM) present in the native (raw) water. DBPs are suspected carcinogens, and as such, have been regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA). This document reports the results of a study that investigated the use of chlorine dioxide pre-oxidation for the reduction of DBP precursors, and subsequently, DBP formation potential (FP). To determine the effectiveness of the chlorine dioxide pre-oxidation process, two surface waters were studied: raw water from Lake Claire (Orlando, FL) and raw water from the East Maui Watershed (Makawao, HI). Lake Claire water contains approximately 11-12 mg/L of NOM and 35 mg/L as CaCO3 of alkalinity, while the Maui source water typically ranges between 7-8 mg/L of NOM with 2-10 mg/L as CaCO3 of alkalinity. Two chlorine dioxide doses were investigated (0.75 mg/L and 1.5 mg/L) and compared to a control to quantify the effectiveness of this advanced pre-treatment oxidation process. Water collected at each site was subject to the following treatment process: oxidation, coagulation, flocculation, sedimentation, ultrafiltration, and disinfection with free chlorine. Disinfection by-product formation potential (DBPFP) analysis showed that ClO2 pre-oxidation, in general, increased the 7-day DBPFP of the East Maui water, and decreased the 7-day DBPFP of the Lake Claire source water. For the Lake Claire water at the higher ClO2 dose, total trihalomethanes (TTHM) were decreased by 37 percent and the five regulated haloacetic acids (HAA5) by 23 percent. For the East Maui source water at the higher ClO2 dose, TTHM's were increased by 53 percent and HAA5's by 60 percent. Future research should determine the effect of alkalinity on DBPFP, which could be the reason why chlorine dioxide pre-oxidation caused one water source's DBPFP to decrease and the other to increase.
Identifier: CFH0004734 (IID), ucf:45393 (fedora)
Note(s): 2015-05-01
B.S.Env.E.
Engineering and Computer Science, Dept. of Civil, Environmental and Construction Engineering
Bachelors
This record was generated from author submitted information.
Subject(s): Disinfection by-products
pre-oxidation
chlorine dioxide
surface water
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFH0004734
Restrictions on Access: public
Host Institution: UCF

In Collections