
University of Central Florida
Masthead
Logo
Honors Undergraduate Theses Campus Access

Studies on the Potential Regulation of USP30 by
Omi/HtrA2 Protease
2019

Sunmi Jin
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/honorstheses

University of Central Florida Libraries http://library.ucf.edu

This Campus Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in
Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

Footer Logo

Recommended Citation

Jin, Sunmi, "Studies on the Potential Regulation of USP30 by Omi/HtrA2 Protease" (2019). Honors Undergraduate Theses. 498.
https://stars.library.ucf.edu/honorstheses/498

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses
http://library.ucf.edu
https://stars.library.ucf.edu/honorstheses/498?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

 

 

STUDIES ON THE POTENTIAL REGULATION OF USP30 BY OMI/HTRA2 

PROTEASE 

 

 

 

by  

 

SUNMI JIN 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements  

for the Honors in the Major Program in Biomedical Sciences  

in the College of Medicine  

and in the Burnett School Honors College  

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

Spring Term 2019 

 

 

 

Thesis Chair: Dr. Antonis S. Zervos  



ii 

 

 

ABSTRACT 

This thesis intends to determine whether the deubiquitinating enzyme ubiquitin-specific protease 

30 (USP30) is cleaved by Omi/HtrA2 (hereafter referred to as Omi) serine protease during 

mitochondrial stress. USP30 is a mitochondrial protein that is anchored in the outer mitochondrial 

membrane and has components in the intermembrane space (IMS) as well as in the cytoplasm. 

USP30’s IMS component has a six-amino-acid sequence that is very similar to Omi’s consensus 

cleavage sites. Under normal conditions, Omi resides exclusively within the IMS; therefore, if Omi 

were to cleave USP30, it would target the part of the protein located in the IMS component. Omi 

is known to play a crucial role in a variety of diseases states including cancers, neurodegenerative 

diseases, and metabolic disorders. Since Omi is a serine protease, it is assumed to carry out its 

normal function through the direct cleavage and degradation of specific substrates. If USP30 

deubiquitinase is a bona fide substrate of Omi, this will provide new and essential information on 

the mechanism by which Omi regulates the polyubiquitination process during mitochondrial stress.  
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CHAPTER ONE: INTRODUCTION AND REVIEW OF LITERATURE 

1.1 The Ubiquitin-Proteasome System 

The controlled and selective method that cells use to degrade proteins is known as the 

ubiquitin-proteasome system (UPS). The system involves a small, 76 residue (8 kDa) post-

translational modifier known as ubiquitin and a trio of enzymes: the ubiquitin-activating factor 

(E1), ubiquitin-conjugating factor (E2), and ubiquitin-ligating factor (E3) [1, 2]. In human cells, 

there are two E1 enzymes, more than 30 E2s, and over 1000 E3s [3]. With the assistance of the 

three factors, the Gly76 residue in the ubiquitin molecule is covalently linked to the ε-amino group 

of an accepting lysine residue in the target substrate [2]. The ubiquitin molecule may sometimes 

also be linked to the amino terminus of a target substrate, albeit less frequently [4].  

To ubiquitinate a substrate, the ubiquitin molecule is first adenylated in an energy-

dependent manner and is subsequently attached to a cysteine residue within an E1’s active site via 

a thioester bond. The activated ubiquitin is then transferred to the cysteine residue in an E2’s active 

site. An E2 forms a high-energy thioester bond to produce ubiquitin-charged intermediates that 

will eventually interact with E3s. In the final step, the small ubiquitin molecule is transferred to an 

E3 and is ligated to the epsilon amino group of a lysine residue in the substrate in one of two ways, 

depending on the family of enzymes that the E3 belongs to [1, 2, 4]. The over 1000 E3s can be 

separated into three families and two categories according to how ubiquitin is transferred to the 

substrate. The homologous to E6AP carboxy-terminus (HECT) and RING-between-RING (RBR) 

families utilize the indirect method whereby ubiquitin is transferred to the cysteine residue in the 

enzymes’ active sites and subsequently ligated to the substrate. The really interesting new gene 

(RING) family of E3 enzymes does not have an active site and thus simultaneously binds to the 
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ubiquitin-charged E2 and substrate in order to facilitate ligating the molecule to the target directly 

[5].  

Ubiquitination may take the form of monoubiquitination, in which the modifier is added 

only once, or polyubiquitination, in which multiple ubiquitin molecules form chains on a substrate 

by linking to one another [4, 6]. Polyubiquitin chains form by linking ubiquitin moieties to one 

another using seven possible lysine residues within the molecule. These lysine residues are now 

known to be Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63 [4]. There is evidence that 

polyubiquitin chains with different structures may fulfill different functions depending on where 

the ubiquitin molecules form linkages to one another [7]. The most well-understood instance of 

polyubiquitination results from chains that form Lys48 linkages; polyubiquitin chains longer than 

four moieties resulting from Lys48 linkages are targeted for degradation via the 26S proteasome 

for destruction [6, 7] (Figure 1).  

Proteasomes are complexes of proteins which are responsible for the recycling and 

degradation of proteins within cells. The 26S proteasome is the specific complex of proteolytic 

proteins that is associated with ubiquitin-dependent protein degradation, and it is composed of one 

20S and two 19S subunits [1, 6]. The 20S core complex is a stack of four heptameric rings, while 

the 19S caps (also known as the lid and base) are groups of 15 to 20 enzymes that are thought to 

include at least 6 ATPases and a deubiquitinating enzyme. The 19S subunits are responsible for 

recognizing polyubiquitinated sequences and unfolding proteins so that they may enter and access 

active sites of the core complex in what is thought to be an energy-dependent process [6].  

Although the UPS is responsible for protein degradation and turnover, it plays many other 

essential roles as well. Some other important functions fulfilled by ubiquitination include 

sequestering proteins to prevent their activity and targeting specific cellular contents to certain 
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multivesicular bodies within the cell [8-10].  Given the large number of substrates that it can 

interact with, the UPS is imperative to the proper functioning of the cell and has been implicated 

in a number of important processes such as signal transduction, transcriptional regulation, the 

immune response, apoptosis, and receptor downregulation [1, 6]. Malfunction of the UPS has been 

demonstrated to be linked to a number of disease states, particularly those that are 

neurodegenerative, including Huntington’s disease, Alzheimer’s disease, and amyotrophic lateral 

sclerosis (ALS) [11]. It has also been associated with other pathological conditions such as cystic 

fibrosis, some genetic autoimmune disorders, and in a number of cancers such as colorectal cancer, 

breast cancer, and prostate cancer [1, 11].  
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Figure 1: The Ubiquitination Process 

Ubiquitination is a process that utilizes a three-enzyme cascade in order to transfer a ubiquitin molecule to the desired 

substrate. The three different enzymes are E1 (ubiquitin-activating factor), E2 (ubiquitin-conjugating factor), and E3 

(ubiquitin-ligating factor). The two primary mechanisms that E3s utilize to ligate the ubiquitin moiety to the substrate 

are shown. In the above mechanism, ubiquitin is ligated indirectly by transferring it to the E3 active site (as in the case 

of the HECT and RBR families). In the below mechanism, ubiquitin is ligated directly without transfer to the E3 (as 

in the case of the RING family). [12] 
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1.2 Deubiquitination 

In a process directly antagonistic to ubiquitination, deubiquitination is the process of 

removing ubiquitin from modified substrates. Deubiquitinases (DUBs) are responsible for 

removing or editing already-ligated ubiquitin molecules and therefore are involved in regulating 

the outcomes of the UPS [13]. Deubiquitinases are able to cleave ubiquitin molecules in 

polyubiquitin chains or directly from the surface of the protein substrate [14, 15].  

The human genome codes for approximately 100 different deubiquitinating enzymes which 

fall into six different categories [16]. The five most well-characterized of these enzyme families 

are the ubiquitin carboxy-terminal hydrolases (UCTHs), the ubiquitin-specific proteases (USPs), 

the ovarian tumor proteases (OTPs), the Josephins, also known as Machado–Joseph disease 

proteases (MJDs), and the metalloproteases known as JAB1/MPN/MOV34 (JAMMs) [14]. The 

sixth and most recently discovered family of deubiquitinases are the MIU-containing novel DUB 

family (MINDYs) proteases [15, 16].  

Deubiquitinating enzymes play an important role in regulating levels of free ubiquitin in 

the cell and in controlling the fate of ubiquitinated substrates, both through remodeling and through 

recycling [14]. Deubiquitinases recycle ubiquitin moieties at the proteasome and at the lysosome 

where they are responsible for cleaving ubiquitin before substrates are degraded [13, 14, 17]. They 

are important in remodeling ubiquitin chains on substrates as well, playing integral roles in 

determining the fates of protein substrates by potentially reversing the effects of ubiquitination and 

the UPS; this could take the form of changing the protein’s activity and location or rescuing the 

originally ubiquitinated substrate from degradation [14]. Additionally, because ubiquitin is 

synthesized as a fusion protein in humans, deubiquitinases also have the responsibility of cleaving 

the fusion protein in order to generate free ubiquitin molecules (Figure 2). Some deubiquitinases 
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have also been found to be able to interact with E2s in order to prevent and interfere with the 

activity of E3 ligases [15]. Proper functioning of deubiquitinating enzymes depends on regulation 

within cells. Levels and activities of deubiquitinating enzymes are kept under control through 

various methods such as subcellular localization and post-translational modification. Subcellular 

localization also plays an important role in regulating deubiquitinase activity by determining which 

substrates the enzymes have access to, while post-translational modification such as 

phosphorylation and ubiquitination of deubiquitinating enzymes have been demonstrated to be 

crucial regulators in deubiquitinase activity [13, 14, 18].  

Malfunction of deubiquitinating proteins can cause pathological states in many of the areas 

that the UPS regulates. The UPS and deubiquitination have been implicated in cell cycle 

regulation, intracellular signaling, transcriptional control, and their malfunctions have been linked 

to many neurodegenerative pathologies such as Machado-Joseph Disease, Parkinson’s disease, and 

Alzheimer’s disease [13, 14]. For this reason, understanding the significance of deubiquitination 

and its involved machinery is as important as deconstructing the impact of ubiquitination.  
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Figure 2: Functions and Processes of Deubiquitinating Enzymes 

Deubiquitinases are crucial players in maintaining proper cell functioning. [3] 

A. Ubiquitin in human cells is translated as a fusion protein. Deubiquitinases are responsible for processing and 

cleaving this linear fusion protein into useable free ubiquitin molecules 

B. Deubiquitinases can rescue a protein targeted for degradation by removing polyubiquitin chains. 

C. Chains that have been removed from substrates are cleaved deubiquitinating enzymes and recycled by 

processing them back into free ubiquitin for the cell to utilize.  

D. Deubiquitinating proteins may change the fates of proteins that were originally tagged for destruction.  

 

Different ubiquitin chains have been demonstrated to fulfill different functions. Deubiquitinases can edit polyubiquitin 

chains and change the fate of the ubiquitinated protein.  
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1.3 Mitochondrial Dynamics and Mitophagy 

Mitochondria within cells exist in large, coordinated networks that are dynamic in nature; 

they are constantly shifting and changing in size, shape, and location [19]. These characteristics 

change because mitochondria in cells are constantly undergoing fusion (where two mitochondria 

come together to combine into one) and fission (where one mitochondrion splits into two) in order 

to discard damaged/dysfunctional portions of organelles and conduct quality control [19]. 

Increased oxidative stress may induce higher levels of mitochondrial fission as the organelles 

attempt to compensate for and discard damaged portions by targeting them for destruction and 

removal via cytochrome c release which may eventually lead to mitophagy [19]. Regulation of 

mitochondrial fusion and fission is thus essential to the survival of the cell.  

Mitochondrial fusion is controlled mainly by mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and 

optic atrophy protein 1 (OPA1) [20] (Figure 3). Both Mfn1 and Mfn2 are anchored in the outer 

mitochondrial membrane (OMM) by their carboxy-terminus; their amino-terminus contains their 

catalytic activity. The cytosolic amino-terminus has GTPase activity that can facilitate binding to 

nearby mitochondria by providing required energy to fuse lipid bilayers [19]. They are essential 

for maintenance of the mitochondrial network within cells, and without them, mitochondrial fusion 

is shown to be impaired. OPA1 is a 120 kDa dynamin-like protein that is embedded within the 

inner mitochondrial membrane (IMM) that plays an integral role in cristae remodeling and 

mitochondrial fusion [21].  

On the other hand, fission of mitochondria is regulated by a variety of proteins including 

dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial fission 

factor (MFF), and mitochondrial dynamic proteins 49/51 kDa (MiD49/51) [19]. Drp1 is a GTPase 

that functions to mechanically constrict around the mitochondria and facilitate the early stages of 
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fission. FIS1 is anchored in OMM and serves to aid in forming the fission complex. In mammalian 

cells, MFF behaves as a mitochondrial receptor for Drp1. MiD49/51 are components of the fission 

complex that forms and without these proteins, Drp1 translocation to the mitochondrial decreases 

and mitochondria divide less frequently [22].   

Mitophagy is a specialized form of autophagy that the cell uses in order to degrade and 

dispose of mitochondria that have been damaged. It is selective and non-random [23]. Its main 

function is mitochondrial quality control whereby it facilitates maintenance of a healthy 

mitochondrial network within the cell [24]. Mitochondrial damage may occur due to a number of 

factors or events. One of the main components in mitochondrial damage includes the production 

of reactive oxygen species (ROS) which can damage the cell. Some of the most prevalent ROS 

found in cells are superoxide anion, hydrogen peroxide, and hydroxyl radical, all of which are 

toxic byproducts of oxidative phosphorylation [25]. Mitochondria that sustain damage from an 

over-accumulation of ROS may experience IMM depolarization, which signals cues to begin 

mobilizing autophagy machinery [23].  Therefore, the cell protects itself from apoptosis by 

ensuring that damaged mitochondria are removed [19].  

The most well-characterized pathway by which mitophagy initiates involves the functions 

of the serine-threonine kinase known as PTEN-induced putative kinase protein 1 (PINK1) and an 

E3 ligase known as Parkin [26]. Under normal conditions, mitochondria have high membrane 

potentials and PINK1 is able to pass through the translocase of the outer and inner membrane 

complex (TOM/TIM complex) and be cleaved by two proteins mitochondrial processing peptidase 

(MPP) and presenilins-associated rhomboid-like protein (PARL). When the membrane depolarizes 

in unhealthy mitochondria, the import of PINK1 is prevented and it accumulates on the surface of 
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the mitochondria, recruiting E3 ligase Parkin which ubiquitinates the mitofusin proteins and the 

outer membrane of the organelle [25, 26].   

While mitophagy is essential to maintaining a healthy mitochondrial population and proper 

cellular function, its regulation is as well. One method through which this regulation is 

accomplished is the utilization of previously discussed deubiquitinating enzymes, which can act 

as negative regulators of mitophagy [26].   
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Figure 3: Mitochondrial Fusion and Fission 

Mitochondrial fusion is mediated by Mfn1, Mfn2, and OPA1 proteins. Mfn1 and Mfn2 are responsible for outer 

mitochondrial membrane fusion while OPA1 mediates inner mitochondrial membrane fusion and cristae remodeling. 

Mitochondrial fission is facilitated by Drp1, FIS1, MFF, and MiD49/51. Drp1 functions as a mechanoenzyme that 

wraps around the circumference of a mitochondrion in order to physically constrict the organelle. FIS1 and MFF help 

Drp1 form the fission complex and MiD49/51 assists in Drp1 translocation to the mitochondria. The endoplasmic 

reticulum of the cell also facilitates physical constriction around the mitochondria during fission. [22] 
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1.4 Omi/HtrA2 

Omi, also known as high temperature requirement protein A2 (HtrA2) is a 458 amino acid 

protein with molecular weight 49 kDa. It is an ATP-independent serine protease that resides within 

intermembrane space (IMS) of the mitochondria under normal conditions and maintains a healthy 

mitochondrial population [27, 28]. Under conditions of stress, Omi translocates to the cytosol of 

the cell where it facilitates cell death [29]. Mature and functional Omi, composed of amino acids 

134-458, is a pyramidal, homotrimeric protein; at the top of this pyramid is an inhibitors of 

apoptosis protein (IAP) binding motif, also known as an IBM, which is responsible for Omi’s 

interactions with IAPs. At the base of this pyramidal protein are three PDZ domains that function 

in substrate access to the active site within [30].  

The function of Omi depends upon its location within the cell. When Omi translocates to 

the cytosol in response to apoptotic stimuli, it mediates both caspase-dependent and caspase-

independent cell death via its serine-protease domain [31]. After proteolytic activation, Omi 

facilitates caspase-dependent cell death by binding to IAPs, thus deterring their function and 

triggering activation of caspases. For this reason, Omi was originally thought to be a proapoptotic 

protein [32]. However, when it is present within the IMS, Omi has been demonstrated to play 

integral roles in eliminating misfolded proteins. In cells lacking functional Omi, increased levels 

of an E3 ubiquitin ligase known as Mulan causes a decrease in Mfn2, resulting in higher levels of 

mitophagy [31]. In mice with nonfunctional Omi due to a Ser276Cys mutation, a progressive 

neuromuscular disease state known as motor neuron degeneration 2 (mnd2) develops [33]. 

Overexpression of Omi in transgenic mice led to a normal phenotype rather than showing an 

increase in apoptosis; this observation supports Omi function in neuroprotection, rather than 

apoptosis [32, 34].   
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Omi has been implicated in certain neurodegenerative disorders. Mnd2 mice exhibit many 

of the distinctive features of Parkinson’s disease (PD) including reduced body weight, reduced 

organ size, muscle atrophy, loss of neurons in the basal ganglia’s striatum, and early death [33]. 

Some studies have also linked Omi to Alzheimer’s disease, as Omi has been demonstrated to 

interact with presenilin-1. The presenilin-1 gene has been identified as a pathogenic locus involved 

in Alzheimer's disease [35].  
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1.5 Ubiquitin Specific Protease 30 

Ubiquitin specific protease 30 (USP30)–also known as deubiquitinating enzyme 30, 

ubiquitin thioesterase 30, ubiquitin-specific-processing protease 30, and ubiquitin carboxy-

terminal hydrolase 30–is a 517 amino acid mitochondrial deubiquitinase protein that is anchored 

in the OMM within the cell (Figure 4). It is the only deubiquitination enzyme that is directly 

tethered to the OMM [36]. The enzyme has a domain in the mitochondrial IMS (1-35), a single 

transmembrane helix domain (36-56), and a catalytic domain in the cytoplasm (57-517) [37]. 

The catalytic activity of USP30 is responsible for negatively regulating Parkin-mediated 

mitophagy. When USP30 is mutated (Cys77Ser) to a catalytically inactive form, the enzyme is no 

longer effective at preventing mitophagy, insinuating that USP30’s deubiquitinating activity is 

integral in stopping it [36, 38]. USP30 functions in an antagonistic manner to Parkin by removing 

ubiquitin molecules from substrates which were added by Parkin and is thus able to oppose Parkin-

mediated mitophagy [24]. In vitro, USP30 preferentially cleaves Lys6, Lys48, Lys11, and Lys63 

residues in order of most efficiently to least [24, 26, 39, 40]. Underexpression of USP30 with 

concomitant overexpression of Parkin promotes mitophagy when mitochondria are induced to 

depolarize; overexpression of USP30 reverses ubiquitination completed by Parkin and inhibits 

mitophagy. This demonstrates that the deubiquitinase is a key inhibitor of mitophagy and that it 

works in opposition to Parkin [24].  

USP30 is additionally thought to regulate mitochondrial morphology and dynamics by 

facilitating the deubiquitination of Mfn1 and Mfn2; USP30’s depletion using RNA interference 

has been demonstrated to result in heightened levels of mitochondrial fusion and longer, more 

interconnected mitochondrial networks [39].  
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USP30 has recently been the target of inhibition in treatments regarding certain 

neurodegenerative disorders, especially PD. Mutations in Parkin, which have been implicated in 

certain types of PD, are thought to be able to be compensated for by inhibition of USP30’s activity. 

Removal of damaged or dysfunctional mitochondria is crucial in controlling excessive oxidative 

stress [26]. For this reason, it is thought that inhibition of USP30 as a negative mediator of 

mitophagy promotes mitochondrial quality control in cells by promoting clearance of damaged 

mitochondria. It has been demonstrated that by essentially removing the brakes on mitophagy in 

this way, clearance of damaged mitochondria was restored in Parkin-deficient cells [24].  
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Figure 4: USP30 in the Outer Mitochondrial Membrane 

USP30 is anchored in the outer mitochondrial membrane. It is a 517 amino acid protein with amino acids 1-35 in the 

intermembrane space, amino acids 36-56 spanning the OMM, and amino acids 57-517 in the cytoplasm of the cell. It 

is one of four proteins that are anchored to the OMM but is the only one that possesses deubiquitination activity. Omi 

is a serine protease that resides within the IMS of the mitochondria. 
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517 
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CHAPTER TWO: MATERIALS AND METHODS  

2.1 Construction of cDNA Corresponding to E2E3-USP30-E2D1 Recombinant Protein 

2.1a Construction of Fusion Protein Using Polymerase Chain Reaction 

The cDNA corresponding to the fusion protein consisting of ubiquitin-conjugating enzyme 

E2E3 (E2E3), the IMS component of USP30, and ubiquitin-conjugating enzyme E2D1 (E2D1) 

(hereafter referred to as the fusion or recombinant protein of interest E3-USP30-D1) was created 

using a series of five different polymerase chain reactions (PCRs) (Figure 5). Table 1 lists the 

utilized primers for each reaction, the cDNA sequence each primer amplified, and the restriction 

site each primer contains. In reaction 1, the cDNA corresponding to E2E3 was amplified using 

forward primer TZ456 with an MfeI cut site and reverse primer TZ577 (Figure 5a). 

 Although the multiple cloning site of the pET-28a+ vector has restriction sites for EcoRI 

and XhoI within it (Figure 6), a primer with a cut site for EcoRI could not be utilized for this 

experiment because the cDNA sequence of E2E3 contains an EcoRI restriction site (Figure 7). If 

EcoRI and XhoI were used to digest the cDNA corresponding to the fusion protein, EcoRI would 

cleave it and render protein expression impossible. A primer with a restriction site for MfeI was 

utilized instead because the MfeI restriction endonuclease produces overhangs identical to the 

overhangs of EcoRI’s restriction site but does not cleave the restriction site of EcoRI in the cDNA 

of E2E3 (Figures 7 and 8). Therefore, while EcoRI and XhoI were used to cleave the vector, MfeI 

and XhoI were used to cleave the insert so EcoRI would not cut the cDNA corresponding to the 

fusion protein. 
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Figure 5: Overview of Fusion Protein Synthesis 

An E3-USP30-D1 fusion protein was constructed to facilitate determination of whether Omi cleaves USP30’s IMS 

component. Colors in the primers denote homology to the cDNA sequences with their same color (e.g., orange primer 

denotes homology to cDNA associated with E2E3). 

A. In reaction one, forward primer TZ456 with an MfeI restriction site and reverse primer TZ577 were used to 

amplify E2E3 cDNA.   

B. In reaction two, forward primer TZ567 and reverse primer TZ578 were used to amplify the USP30 IMS 

fragment’s cDNA. The products of reactions one and two were purified in a 1.5% agarose gel. 

C. In reaction three, the purified products of one and two were used as the PCR reaction template. The outside 

primers – forward primer TZ456 with an MfeI cut site and reverse primer TZ578 – were used to link the 

products from reaction one and two.  

D. In reaction four, forward primer TZ579 and reverse primer TZ542 with an XhoI restriction site were used to 

amplify the E2D1 cDNA.  

E. In reaction five, the purified products from reactions three and four were used as the PCR reaction template. 

The outside primers – forward primer TZ456 and reverse primer TZ542 – were used to link the products and 

create the fusion protein cDNA.   

F. Pictured is the cDNA corresponding to the E3-USP30-D1 fusion protein with restriction sites for MfeI and 

XhoI that will be ligated into the pET-28a+ vector.  
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Table 1: Primer Sequences for Fusion Protein 

Primer cDNA 

Amplified 

Sequence (5’ → 3’) Restriction 

Site 

TZ456 

(Forward) 

E2E3 GCGCAATTGATGTCCAGTGATAGGCAAAGGTC MfeI 

TZ577 

(Reverse) 

E2E3 CGGCCCGGGAGCTCAGTGTTGCGTACTTGGTCC - 

TZ576 

(Forward) 

USP30 

(IMS) 

GGACCAAGTACGCAACACTGAGCTCCCGGGCCG - 

TZ578 

(Reverse) 

USP30 

(IMS) 

TCCTCTTCAGCGCCAGTTCTTCATGACTTT - 

TZ579 

(Forward) 

E2D1 AAAGTCATGAAGAACTGGCGCTGAAGAGGA - 

TZ542 

(Reverse) 

E2D1 CCGCTCGAGTTACATTGCATATTTCTGAGTCCA XhoI 

 

Forward and reverse primers used to amplify the cDNA sequence of the E3-USP30-D1 fusion protein. 
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Figure 6: Overview of pET-28a+ vector 

Overview of pET-28a+ bacterial expression vector including T7 lac promoter, addition of an amino-terminus His-tag, 

kanamycin resistance, multiple cloning sites, etc. The restriction sites of XhoI (green) and EcoRI (orange) are present.   
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Figure 7: Nucleotide Sequence for E2E3 

Figure 7 shows the 624-nucleotide sequence of the DNA sequence corresponding to the E2E3 protein, which was one 

of the three parts of the cDNA for the fusion protein (Figure 5a). Outlined in orange is the restriction site for the 

restriction endonuclease EcoRI. If EcoRI was used to digest the cDNA insert, it would cut in the middle of the 

sequence. For this reason, EcoRI could not be utilized to prepare the cDNA for ligation, and MfeI was used instead.   
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Figure 8: Justification for the use of MfeI Restriction Endonuclease 

Represented in red is the cDNA corresponding to the recombinant E3-USP30-D1 protein and represented in black is 

the pET-28a+ vector. Orange denotes the restriction site for EcoRI, blue the site for MfeI, and green the site for XhoI. 

A. Black boxes show the ligated overhangs of the respective endonuclease restriction sites. The overhangs for 

the restriction sites of EcoRI and MfeI are complimentary and thus can anneal.  

B. The restriction site for EcoRI 

C. The restriction site for MfeI 

D. The restriction site for XhoI 
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As seen in Figure 5b, the cDNA corresponding to the IMS component of USP30 was 

amplified using forward primer TZ576 and reverse primer TZ578 for reaction 2. After the products 

from reactions 1 and 2 were purified using a 1.5% DNA agarose gel using the protocol outlined in 

section 2.1b, they were used as the template for reaction 3 and amplified using the outside primers 

(forward primer TZ456 with an MfeI cut site and reverse primer TZ578); this subsequently 

produced the fusion of the cDNA corresponding to E2E3 and the cDNA corresponding to USP30’s 

IMS component (Figure 5c). In reaction 4, cDNA corresponding to E2D1 was used as the template 

and amplified using forward primer RZ579 and reverse primer TZ542 containing an XhoI cut site 

(Figure 5d). Once the products from reactions 3 and 4 were purified using a 1.5% DNA agarose 

gel, reaction 5 produced the cDNA corresponding to the fusion E3-USP30-D1 protein by linking 

the two products resulting from reaction 3 and 4. Thus, the final product for reaction 5 was made 

by using the respective outside primers (forward primer TZ456 with a restriction site for MfeI and 

reverse primer TZ542 with a restriction site for XhoI) as seen in Figures 5e and 5f. 

 The reaction mixtures and PCR programs utilized for each of the five PCR reactions can 

be found in tables 2-11. 
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Table 2: PCR Reaction Mixture for Reaction 1 

 

 

 

 

 

 

Table 3: PCR Reaction Mixture for Reaction 2 

 

 

 

 

 

 

Table 4: PCR Reaction Mixture for Reaction 3 

 

 

 

 

 

 

 

  

Reagent Amount 

Template DNA (E2E3) 1 µL / 10ng 

Forward primer (TZ456) 1 µL 

Reverse primer (TZ577) 1 µL 

10x PCR buffer (with Mg2+) 5 µL 

dNTPs 1 µL 

TAQ polymerase 0.3 µL 

Sterile water 40.7 µL 

Total 50  µL 

Reagent Amount 

Template DNA (USP30) 1 µL / 10ng 

Forward primer (TZ576) 1 µL 

Reverse primer (TZ578) 1 µL 

10x PCR buffer (with Mg2+) 5 µL 

dNTPs 1 µL 

TAQ polymerase 0.3 µL 

Sterile water 40.7 µL 

Total 50 µL 

Reagent Amount 

Template DNA (USP30) 2.5 µL / 25ng 

Template DNA (E2E3) 1 µL 

Forward primer (TZ456) 1 µL 

Reverse primer (TZ578) 1 µL 

10x PCR buffer (with Mg2+) 5 µL 

dNTPs 1 µL 

TAQ polymerase 0.3 µL 

Sterile water 38.2 µL 

Total 50 µL 
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Table 5: PCR Reaction Mixture for Reaction 4 

Reagent Amount 

Template DNA (E2D1) 1 µL / 10ng 

Forward primer (TZ479) 1 µL 

Reverse primer (542) 1 µL 

10x PCR buffer (with Mg2+) 5 µL 

dNTPs 1 µL 

TAQ polymerase 0.3 µL 

Sterile water 40.7 µL 

Total 50 µL 
 

Table 6: PCR Reaction Mixture for Reaction 5 

Reagent Amount 

Template DNA (E2D1) 1 µL / 10ng 

Template DNA (USP30+E2E3) 1 µL 

Forward primer 1 µL 

Reverse primer 1 µL 

10x PCR buffer (with Mg2+) 5 µL 

dNTPs 1 µL 

TAQ polymerase 0.3 µL 

Sterile water 39.7 µL 

Total 50 µL 
 

Table 7: PCR Program for Reaction 1 

Cycles Step Temperature Duration 

1 Initial Denaturation 96°C 120s 

25 

Denaturation 96°C 30s 

Annealing 55°C 30s 

Elongation 72°C 45s 

1 Final elongation 72°C 7min 

1 Sample stored 6°C Indefinite 

 
Table 8: PCR Program for Reaction 2 

Cycles Step Temperature Duration 

1 Initial Denaturation 96°C 120s 

25 

Denaturation 96°C 30s 

Annealing 55°C 30s 

Elongation 72°C 60s 

1 Final elongation 72°C 7min 

1 Sample stored 6°C Indefinite 
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Table 9: PCR Program for Reaction 3 

Cycles Step Temperature Duration 

1 Initial Denaturation 96°C 120s 

25 

Denaturation 96°C 30s 

Annealing 55°C 30s 

Elongation 72°C 60s 

1 Final elongation 72°C 7min 

1 Sample stored 6°C Indefinite 

 

Table 10: PCR Program for Reaction 4 

Cycles Step Temperature Duration 

1 Initial Denaturation 96°C 120s 

25 

Denaturation 96°C 30s 

Annealing 55°C 30s 

Elongation 72°C 45s 

1 Final elongation 72°C 7min 

1 Sample stored 6°C Indefinite 

 

Table 11: PCR Program for Reaction 5 

Cycles Step Temperature Duration 

1 Initial Denaturation 96°C 120s 

25 

Denaturation 96°C 30s 

Annealing 55°C 30s 

Elongation 72°C 45s 

1 Final elongation 72°C 7min 

1 Sample stored 6°C Indefinite 
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2.1b Zymoclean Gel DNA Recovery Kit  

 To purify the products of PCR reactions 1, 2, 3, and 4, the suggested protocol from 

Zymoclean Gel DNA Recovery kit was followed. Necessary lanes of DNA from the agarose gel 

were excised using a razor blade and transferred into 1.5 mL Eppendorf tubes. If “V” was the 

volume of the agarose that was excised, 3V of the provided buffer ABD was added to the 

samples. They were allowed to incubate at 55°C for 5-10 minutes until the agarose gel was 

observed to have been completely dissolved.  

 The melted contents of the samples were transferred to a Zymo-Spin Column placed into 

the provided collection tubes and centrifuged from one minute at 13,300 RPM; flowthrough was 

discarded. Then, 200 µL of DNA Wash buffer was added and the columns were centrifuged for 

30 seconds at 13,300 RPM. Flowthrough was again discarded, and the previous step was 

repeated once more. In the final step, 6 µL of DNA Elution Buffer was placed into the columns. 

The columns were placed into new 1.5 mL Eppendorf tubes and centrifuged for 30-60 seconds in 

order to elute the DNA.  

 

2.1c Restriction Enzyme Digestion of cDNA 

 To prepare for the ligation, the insert and vector were both digested with EcoRI, MfeI and 

XhoI in three separate reactions. The reaction mixture for the restriction enzyme digestions 

included:  50 µL DNA, 37 µL sterile dH2O, 10 µL 10x Restriction enzyme buffer, 1.5 µL BSA, 

and 1.5 µL EcoRI at 10 units/µL. This reaction mixture was placed in a 37°C water bath for one 

hour and allowed to react. After the reaction mixture had incubated for one hour, an additional 0.5 

µL of EcoRI at 10 units/µL were added and allowed to react for an additional hour. Following the 
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two hours for digestion with EcoRI, DNA was precipitated from the solution to separate it from 

the buffer and enzyme and to repeat the digestions for MfeI and XhoI in their corresponding 

buffers. DNA agarose gel electrophoresis was used to determine the success of the restriction 

enzyme digestion and to estimate the amount of DNA in vector and insert solutions.  

 

2.1d DNA Precipitation 

 The volumes of the samples in which the DNA was suspended were estimated and assigned 

a value of “V.” 10% of V of 3M sodium acetate (pH 5.5), and 2V of pure ethanol at -20°C were 

added to the solution. The sample was mixed thoroughly and stored at -20°C for approximately 20 

minutes before being centrifuged for 20 minutes at 4°C and discarding the supernatant. This 

centrifugation was repeated once more before 250 µL 70% ethanol was added to the solution.  The 

sample was centrifuged for five minutes at 4°C, and then the supernatant was discarded. The pellet 

was allowed to dry for five to ten minutes in a speed vacuum before being resuspended in 50 µL 

sterile dH2O.  

 

2.1e DNA Agarose Gel Electrophoresis 

A DNA agarose gel was used to ascertain the amount and size of DNA in each sample. To 

make a 1.5% gel, 100 mL of 1x TAE (0.04 M Tris-Acetate, 0.001 M EDTA) was combined with 

1.5 g of agarose powder. This solution was poured into an Erlenmeyer flask and microwaved for 

approximately two minutes until all of the agarose powder was sufficiently dissolved. Afterward, 

the flask was run under cold water to cool the solution, and 5 µL of 0.5 µg/µL ethidium bromide 

was added. Upon swirling the flask to mix it, the solution was poured into a gel tray, which had 
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had combs placed into it. After ensuring that any bubbles were removed, the gel was then allowed 

to set, further cool, and solidify. 

Once the gel had solidified, the combs were carefully removed. To prepare the samples for 

loading, 1-5 µL of the samples were combined with 5µL of 10x loading buffer (30% glycerol and 

2% Orange-G, both dissolved in 1x TAE) before loading them into the wells. In the first well, 2-3 

µL of GeneRuler 1kb DNA ladder was loaded to run alongside the samples. The gel was then 

completely immersed in 1x TAE and run at 150 V until the dye had migrated a sufficient distance. 

The DNA was visualized using UV light in a BioRad Gel-Doc machine.  

 

2.1f DNA Ligation 

 To ligate the vector and insert together, the suggested protocol for Thermo Scientific Rapid 

DNA Ligation Kit was followed. This protocol called for the insert DNA to be at 3:1 molar excess 

over the vector and recommended approximately 0.1 ng of supercoiled vector DNA. The reaction 

mixture also included 3 µL 5x rapid ligation buffer and 1 µL of T4 DNA ligase (1 unit/µL). Sterile, 

nuclease-free water was added to bring the total volume to 15 µL. The mixture was vortexed and 

briefly spun down to collect to liquid and then was allowed to incubate at 22°C for five minutes. 

The ligation was then stored at 4°C.  
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2.2 Expression of E2E3-USP30-E2D1 Recombinant Protein 

2.2a Bacterial Transformation into E. coli DH5α 

Electro-competent E. coli DH5α cells were taken from a -80°C freezer and allowed to thaw 

on ice. Approximately 3 µL of the DNA ligation was added to the 200 µL aliquot of the electro-

competent DH5α bacterial cells in a pre-chilled electroporation cuvette. The cuvette was placed 

into the Bio-Rad Gene Pulser, and a single exponential decay pulse of 2.5 kV at 400 Ω was 

delivered. Immediately following the pulse,  800 µL of antibiotic-free LB was added to the cuvette 

and gently mixed. The cells were transferred to 1.5 mL Eppendorf tubes and incubated for one 

hour at 37°C. Afterward, 50 µL, 150 µL, and 250 µL of cells were plated on Kanamycin-containing 

lysogeny broth (LB KAN) plates; glass beads were used to spread the bacteria, and the plates were 

incubated overnight at 37°C.   

 

2.2b Isolation of Plasmid DNA from Bacteria: Boiling Method Miniprep 

  Colonies for miniprep were selected from LB KAN plates and grown overnight in 1.5 ml 

of LB KAN media at 37°C. Samples were then poured into 1.5 mL Eppendorf tubes and 

centrifuged for two minutes at 13,300 RPM. The supernatant was aspirated, and the pellet was 

subsequently resuspended in 300 µL of STET/lysozyme solution (8% sucrose, 5% 100X Triton, 

50 mM of Tris-HCl pH 8, 50 mM of EDTA, 10 mg/mL of lysozyme). The samples were then 

boiled in water for one minute and centrifuged for 10 minutes at 13,300 RPM. After centrifugation, 

cellular debris was removed from the samples using a toothpick and discarded. 200 µL of 

isopropanol was added and the tubes were mixed gently but thoroughly via inversion. The samples 

were then centrifuged once more for 10 minutes at 13,300 RPM. The isopropanol was poured off, 
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and 300 µL of pre-chilled 70% ethanol was added to the tubes. Care was taken not to mix or disturb 

the tubes. The samples were centrifuged one last time for five minutes at 13,300 RPM before the 

supernatant was discarded and samples were allowed to dry in a speed vacuum for 10-15 minutes. 

Finally, samples were resuspended in 50 µL of TE.  

 

2.2c Restriction Enzyme Digestion of Insert and Vector  

 In order to verify that the cDNA insert was properly cloned into the pET-28a vector, the 

vector and insert were digested once again using EcoRI and XhoI in a single double-digestion 

reaction. The reaction mixture for the restriction enzyme digestion included 5 µL DNA and 1.5 µL 

EcoRI-XhoI in the total reaction volume of 20 µL. The buffer used for this reaction was EcoRI 

buffer. This reaction mixture was placed in a 37°C water bath for one hour and allowed to react. 

Following the digestion, the product of the digestion was run on a DNA agarose gel. This was 

done in order to confirm that the insert was ligated successfully into the plasmid and to estimate 

the amount of DNA in vector and insert solutions. 

 

2.2d Isolation of Plasmid DNA from Bacteria: NucleoSpin Plasmid Miniprep Kit 

 A clean miniprep was performed, and the suggested protocol in the NucleoSpin Plasmid 

miniprep kit was followed in order to sequence the cDNA for the E3-USP30-D1 fusion protein. 

Bacterial colonies were incubated overnight at 37°C in 1.5 mL LB KAN media. The next day, the 

bacterial suspension was poured into 1.5 Eppendorf tubes and centrifuged for two minutes at 

13,300 RPM. The supernatant was aspirated out, and the pellet was resuspended in 200 µL of 

buffer A1 by pipetting up and down, taking care to ensure no bubbles were formed. Once it was 
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confirmed that there were no cell clumps remaining, buffer A2 was added, and the tubes were 

gently inverted six to eight times. The tubes were then allowed to incubate at room temperature 

for five minutes. Next, buffer A3 was added, and the tubes were mixed by inversion six to eight 

times once again. The samples were centrifuged at 13,300 RPM for 10 minutes at room 

temperature.  

 After the centrifugation was complete, the supernatant from the samples was decanted into 

NucleoSpin Plasmid (NoLid) Columns placed into 2 mL Eppendorf tubes. These columns were 

centrifuged for one minute at 13,300 RPM; flowthrough was discarded, and 600 µL of buffer 

A4/AQ, which was supplemented with ethanol, was added. Samples were then centrifuged for one 

minute. Flowthrough was discarded, and tubes were spun once again at 13,300 RPM for two 

minutes. The columns were then placed into new 1.5 mL Eppendorf tubes, and 50 µL of buffer 

AE was added to elute the DNA. The tube was allowed to incubate at room temperature for one 

minute before it was spun for one minute at 13,300 RPM to allow DNA elution.  

 

2.2e Bacterial Transformation into E. coli BL21 (DE3) 

Electro-competent E. coli BL21 (DE3) cells were taken from a -80°C freezer and allowed 

to thaw on ice 0.5µL of the vector DNA was added to the 50 µL aliquot of the electro-competent 

DH5α bacterial cells in a pre-chilled electroporation cuvette. The cuvette was placed into the Bio-

Rad Gene Pulser, and a single exponential decay pulse of 2.5 kV at 400 Ω was delivered. 

Immediately following the pulse, 800 µL of antibiotic-free LB was added to the cuvette and gently 

mixed. The cells were transferred to 1.5 mL Eppendorf tubes and incubated for one hour at 37°C. 
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Afterward, 50 µL, 150 µL, and 250 µL of cells were plated on LB KAN plates; glass beads were 

used in order to spread the bacteria, and the plates were incubated overnight at 37°C.  

2.2f Induction of Recombinant Protein Using IPTG 

  An isolated colony from the previously grown LB KAN plates was picked and grown in 3-

4 mL of LB KAN media overnight to procure the starter culture. The following day, this starter 

culture was inoculated at a 1:100 dilution into 1 L of LB KAN media. The media was incubated 

at 37°C on a shaker moving at 250 RPM until the optical density (OD) at 600 nm was between 0.8 

and 1.2 OD. When the OD reached a sufficient level, 2mM of isopropyl β-D-1 

thiogalactopyranoside (IPTG) was added to induce the culture to express the E3-USP30-D1 fusion 

protein. The culture was then allowed to grow at 25°C for 4 hours. After induction, bacteria were 

centrifuged in 250 mL bottles at 6,000 RPM for 10 minutes until all of the bacteria had been spun 

down. The supernatant was discarded, and paste was kept and frozen at -80°C. 

 

2.2g Lysis, Sonication, and Protein Purification  

 In order to lyse the collected cells, lysis buffer was made from 1X binding buffer (200 mM 

NaCl, 20 mM Tris pH 8, 10 mM imidazole), protease inhibitors, and 100 µg/mL total volume of 

lysozyme. The cell paste from the induction of the E. coli BL21 bacteria was removed from -80°C 

and resuspended in the lysis buffer using a 10 mL pipet. The suspension was then allowed to 

incubate for 20 minutes at 30°C. To eliminate the extreme turbidity of the suspension, it was 

sonicated and the DNA was sheared until the turbidity was similar to that of a normal protein 

solution. The suspension was then centrifuged at 15,000 RPM for 40 minutes at 4°C and the 

supernatant was collected.  
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 The following protein purification was carried out at 4°C on ice. If the volume of the 

sample was designated “V”, then 0.1V of Ni-NTA agarose resin beads were allowed to rotate 

with the supernatant in a 50 mL falcon tube for two to four hours in order to prepare to purify the 

His-tagged protein. The mixture of protein and Ni-NTA agarose resin beads was placed into a 

column and washed with 20V of 1X binding buffer. Next, the column was washed with 20V of 

1X washing buffer  (200 mM NaCl, 20 mM Tris pH 8, 50 mM imidazole). The column was then 

washed with 5-10V of 1X elution  (200 mM NaCl, 20 mM Tris pH 8, 200 mM imidazole). The 

fractions were dialyzed in a 2 L beaker with dialysis buffer (20 mM Tris-HCl pH 8, 400 mM 

NaCl) overnight at 4°C. The buffer was changed two to three times throughout the night, and it 

was confirmed that the purified protein was the E3-USP30-D1 protein of interest through an 

SDS-PAGE and Western blot.  
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2.3 Assay  

2.3a Omi/HtrA2 Digestion 

 To determine whether the IMS component of USP30 was a substrate of Omi, the fusion protein 

was digested in the presence of the serine protease. Approximately 3 µL (400 ng) Omi and two 

aliquots of 5 and 10 µL (400-800 ng) of recombinant protein were incubated in separate reactions. 

The reaction had a total volume of 15 µL containing Omi Assay Phosphate Buffer (20 mM 

Na2HPO4 pH 8, 10% glycerol, 200 mM NaCl) for one hour at 37°C. Following this assay, the 

reaction products were analyzed using SDS-PAGE and Coomassie Blue staining.  

 

2.3b SDS-PAGE and Coomassie Blue Staining 

  BioRad glass plates were cleaned thoroughly using soap and water, sprayed with 70% 

ethanol, and allowed to air-dry completely. Once the glass plates were dried and assembled, the 

12% resolving gel (10.7 mL of water, 7.5 mL of 40% acrylamide, 6.3 mL of 1.5 M Tris pH 8.8, 

250 µL of 10% SDS, 250 µL of 10% APS, and 10 µL of TEMED) was dispensed into the glass 

plates and covered with isopropanol to ensure an even surface where the resolving gel would meet 

the stacking gel. The resolving gels were allowed to polymerize for at least 20 minutes. After the 

resolving gels had solidified, the isopropanol was rinsed out with water and the 5% stacking gel 

(7.3 mL of water, 1.25 mL of 40% acrylamide, 1.25 mL of 1.5 M Tris pH 6.8, 100 µL of 10% 

SDS, 100µL 10% APS, and 10 µL of TEMED) was dispensed into the glass plates. Combs were 

placed into the stacking gel and it was given another 20 minutes to polymerize. The completed 

gels were then wrapped with dampened paper towels, placed into Ziploc bags, and were stored in 

Tupperware containers where they were kept at 4°C for several days. When needed, the gels were 
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removed from 4°C and allowed to reach room temperature. The plastic combs were removed and 

the glass plates were placed into the BioRad Mini-PROTEAN Tetra cell gel electrophoresis 

apparatus. 

In order to prepare the samples for SDS-PAGE, 5 µl of 4X sample buffer (10% β-

mercaptoethanol, 6% SDS, 20% glycerol, 1/40 X stacking buffer, and 0.2mg/ml bromophenol 

blue) was added. The samples were boiled for 4 minutes and subsequently spun down. Once added 

to their corresponding lanes, the apparatus was filled with protein running buffer (0.02 M Tris, 

0.003 M SDS, 0.19 M glycine, pH 8.3) and the samples were run at 20A until the dye had migrated 

a sufficient distance.  

The gel was stained with Coomassie blue stain (1:1 methanol:dH2O, 0.2% Coomassie 

powder, 0.1% acetic acid) for approximately 40 minutes until the gel was no longer able to be seen 

in the dye. The gel was then placed in destaining solution for at least 2 hours until the background 

was clear. This allowed for confirmation that the fusion protein was expressed and analysis of 

results and cleavage.   

 

2.3c Denaturation of USP30 to Assist Potential Degradation by Omi/HtrA2 Protease 

 In order to confirm that any lack of cleavage was not attributable to an inability of Omi to 

access the potential cleavage site in the IMS component of USP30, the expressed recombinant 

protein was denatured through boiling and digested with Omi once more.  

 The fusion protein was boiled for 10 minutes and then re-digested according to the protocol 

outlined in section 2.3a. The denatured protein digestion was then analyzed and compared to the 

normal condition protein using SDS-PAGE and Coomassie blue staining.  
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CHAPTER THREE: RESULTS 

3.1 Previous Data on USP30 and Omi 

Prior research conducted by the on Omi and USP30 stipulated the potential of the IMS 

component of USP30 to be a substrate of the serine protease. The mature form of Omi is a 324 

residue protein (amino acids 133-458) that contains a conserved AVPS motif, a catalytic domain, 

and a PDZ domain. The AVPS motif is what enables Omi to bind to and interact with IAPs; the 

efficiency of substrate cleavage is therefore determined by the substrate’s IAP-binding motif, 

AVPS [41]. USP30’s IMS component has a six-amino-acid sequence that is very similar to the 

consensus cleavage sites where Omi has been demonstrated to cleave (Figure 9). This provided 

the preliminary data to ask the hypothesis: is USP30 a substrate cleaved by Omi? Under normal 

conditions, Omi is a serine protease that resides exclusively within the IMS. For this reason, if 

USP30 is a substrate of Omi, USP30 must be cleaved within its IMS domain where Omi is able to 

physically access it in vivo.  

In order to determine whether or not Omi/HtrA2 has the capability to cleave USP30, the 

portion of the USP30 DUB that resides within the IMS needed to be digested with Omi. However, 

due to the small size of USP30’s IMS component, visualizing the possible results of Omi digestion 

of the 35 residue IMS fragment on a polyacrylamide gel would be difficult, as bands would be of 

molecular weights that are too small to decisively differentiate. In order to facilitate visualization 

and determine whether or not Omi/HtrA2 cleaves within this small region of USP30, a fusion 

protein was created.  

The creation of the fusion protein, which was made by flanking USP30’s IMS component 

with E2E3 and D2D1, fulfilled three requirements. Firstly, it allowed for better visual confirmation 
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Figure 9: Amino Acid Sequence of USP30 

The full-length amino acid sequence of USP30 is shown above. In blue are amino acids 1-35 which compose the IMS 

component. The underlined letters in blue compose the sequence where Omi is predicted to cleave. In red is the 

transmembrane domain, and in black is the component in the cytoplasm of the cell.  
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of cleavage, if it were to occur. It would be difficult, if not impossible to determine if cleavage 

was successful because the IMS component of USP30 is only 35 residues; by fusing two proteins 

to either side of IMS fragment, determining cleavage would be more straightforward because the 

fusion protein, now cleaved into two, would be at the approximate molecular weights of E2E3 

and E2D1. Secondly, E2E3 and E2D1 were proved in previous experiments in Zervos lab not to 

be cleaved by Omi’s protease activity, making them ideal candidates for this recombinant protein 

(Figure 10). Thirdly, noting that E2E3 is 23 kDa (207 amino acids) and E2D1 is 17 kDa (147 

amino acids), the two proteins were of different enough molecular weights that their bands could 

easily be differentiated from each other on an SDS-PAGE analysis. 

These previous data provided the primary justification for this project. It has been 

suggested that by interacting with USP30, Omi plays a function in regulating the ubiquitination 

process within the cell. Identifying whether this interaction occurs could shed light on the 

mechanisms by which Omi accomplishes this task.  
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Figure 10: Interaction between Omi and other Well-Characterized Proteins within the Cell 

The proteins β-casein, E2E3, E2D1, and E2D2 were all digested in the presence of Omi prior to the creation of the 

E3-USP30-D1 fusion protein’s cDNA in order to ensure that the proteins flanking USP30’s IMS component would 

not be cleaved by Omi.   
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3.2 Omi/HtrA2 Digestion Coomassie Blue Staining Analysis 

 

The cDNA of the E2E3-USP30-E2D1 recombinant protein was cloned into the pET-28-

a+ vector, cloned in E. coli BL21 cells, and expressed E. coli DH5α cells as described in chapter 

two. Then the protein was purified and digested in the presence of Omi in order to determine 

whether USP30 is a bona fide substrate of Omi. SDS-PAGE and Coomassie Blue staining was 

used to verify and analyze the results.  

The fusion protein was expected to be approximately 45 kDa (389 amino acids), since 

E2E3 is 23 kDa (207 amino acids), E2D1 is 17 kDa (147 amino acids), and the IMS component 

of USP30 is 550 Da (35 amino acids). Differing amounts of fusion protein were run in lanes 1 

and 3. The products of the initial digestion with Omi were run in lanes 2 and 4. Mature Omi is 37 

kDa and was run alone in lane 5 for comparison. Because β-casein had been shown to be cleaved 

by Omi in previous experiments, it was used as a positive control. Conversely, since E2E3 had 

been tested previously to ensure that it was not a substrate cleaved by Omi, it was used as a 

negative control in this experiment (Figure 11).  

As can be seen in lanes 2 and 4, only one band of interest can be identified at the 

molecular weight corresponding to the whole fusion protein (45 kDa). Had the cleavage been 

successful, one might have expected to see two bands present in both lanes: one band just above 

23 kDa and the other at just above 17 kDa to demonstrate that the IMS component of USP30 had 

been cleaved. Therefore, in this experiment, USP30 was not shown to be a substrate that is 

cleaved by Omi.  
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Figure 11: Coomassie Blue Analysis of Fusion Protein Omi Digestion 

Omi is 37 kDa and the fusion protein is approximately 45 kDa.  

Lane 1: 5 µl of E3-USP30-D1 protein  

Lane 2: 5 µl of  E3-USP30-D1 protein + Omi 

Lane 3: 10 µl of E3-USP30-D1 protein  

Lane 4: 10 µl of E3-USP30-D1 protein + Omi  

Lane 5: Omi 

Lane 6: β-casein (positive control) 

Lane 7: β-casein + Omi (positive control) 

Lane 8: E2E3 (negative control) 

Lane 9: E2E3 + Omi (negative control) 
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3.3 USP30 Denaturation Coomassie Blue Staining Analysis 

 Following the failure of Omi to cleave the fusion protein within USP30’s IMS 

component, the recombinant protein was boiled in order to denature it. This was done in order to 

determine if the lack of observable cleavage could be attributed to an accessibility issue. If Omi 

cleavage had not been observed due to the fusion protein structure, denaturation of the fusion 

protein would have allowed Omi to access and cleave the IMS component of USP30 within the 

fusion protein.  

 In lanes 1 and 2, the fusion protein and the fusion protein that had been digested by Omi 

were loaded, respectively. In lane 3, the denatured fusion protein was loaded and in lane 4, the 

denatured fusion protein which had been digested by Omi was loaded. E2E3 and β-casein were 

used once again as negative and positive controls, respectively (Figure 12).  

 The results of this experiment were similar to the results shown in Figure 11. The lanes 

which had the fusion protein digested with Omi, lanes 2 and 4, clearly show the 45 kDa band 

which represents the full length of the uncut fusion protein. Below those are the 37 kDa bands 

that denote the serine protease Omi, definitively confirming that USP30 is not a substrate of 

Omi/HtrA2.      
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Figure 12: Coomassie Blue Analysis of Fusion Protein Denaturation and Omi Digestion 

Omi is 37 kDa and the fusion protein is approximately 45 kDa. 

Lane 1: E3-USP30-D1 protein  

Lane 2: E3-USP30-D1 protein + Omi 

Lane 3: Boiled E3-USP30-D1 protein  

Lane 4: Boiled E3-USP30-D1 protein + Omi  

Lane 5: Omi 

Lane 6: E2E3 (negative control) 

Lane 7: E2E3 + Omi (negative control) 

Lane 8: β-casein (positive control) 

Lane 9: β-casein + Omi (positive control) 
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CHAPTER 4: DISCUSSION 

Omi is a serine protease that belongs to the eukaryotic HtrA family of proteins; the HtrA 

family is known to function in removing damaged/denatured proteins at very high temperatures. 

Omi, in particular, seems to serve a dual function depending on its intracellular location. When it 

is localized within the IMS, it helps to maintain mitochondrial homeostasis by playing a key role 

in mitochondrial protein quality control and facilitating fission/fusion dynamics [42, 43]; however, 

when it is released into the cytosol, it fulfills a pro-apoptotic function [33]. A lack of functional 

Omi causes a buildup of Mulan E3 ubiquitin ligase and increases levels of mitophagy within the 

cell [31].  

USP30 is an important OMM-embedded DUB that is part of the peptidase C19 family and 

has been demonstrated to be a negative regulator mitochondrial fusion through deubiquitination of 

Mfn1 and 2 [36, 37]. It was also recently discovered in 2014 that overexpression of USP30 is 

capable of reversing mitophagy driven by Parkin and PINK1 [24]. Because malfunctioning 

mitophagy has been linked to Parkinson’s disease, the potential for therapeutic uses was exciting 

and promising but has thus been inconclusive.  

Further understanding of the mechanisms behind the action of Omi and USP30 may reveal 

important information about how Omi regulates protein quality control and polyubiquitination 

under conditions of stress. Additionally, notwithstanding the interconnected functions of the two 

proteins – such as regulating mitochondrial fusion/fusion and accelerating or deterring the path to 

mitophagy – USP30 and Omi also reside close to each another within the mitochondria. It is known 

that Omi and USP30 share many similar functions in terms mitochondrial dynamics and 

maintenance, but whether Omi interacts with USP30 to fulfill some of those functions and whether 

USP30 is a substrate of Omi is unknown. Combined with the presence of the six hydrophobic 



46 

 

amino acid residues within the IMS component of USP that bear resemblance to Omi’s consensus 

cleavage sequence (Figure 9), these parameters provided the foundation for the hypothesis of our 

project.  

We hypothesized that USP30 would be cleaved within its IMS component as a bona fide 

substrate of Omi. In this work, we tried to determine whether or not USP30 is a substrate of Omi 

by digesting the E3-USP30-D2 fusion protein in the presence of the serine protease. To elucidate 

the interplay between the two closely-situated mitochondrial proteins USP30 and Omi, the E3-

USP30-D1 fusion protein was created (using the 35 residue IMS component of USP30 and the 

proteins E2E3 and E2D1) and was digested in the presence of Omi. Amino acids 35-502 of USP30 

belong to the transmembrane and cytosolic domains of the DUB and were not expressed in the 

final fusion protein because cleavage could only have occurred where Omi and USP30 could have 

physically interacted with each other in the IMS. We created the E3-USP30-D1 recombinant 

protein that was suitable for the digestion and digested it in the presence of Omi in two different 

conditions. In the first the fusion protein was simply purified and digested. In the second, it was 

boiled and denatured before being digested in the presence of Omi to ensure that cleavage was not 

being impeded by inaccessibility due to the fusion protein’s structure.  

Analysis of the Coomassie Blue staining suggested that cleavage did not occur in either the 

normal or the denatured conditions. Given that the conditions in which USP30 resides were not 

perfectly mimicked by this project, further testing should be conducted in order to conclusively 

determine that USP30 is not a substrate of Omi. The in vitro system that was tested in this project 

contained only the E3-USP30-D2 substrate and Omi; it is possible that other proteins may 

participate in the cleavage in vivo. However, these proteins were not included in the in vitro system, 

which may explain the observed lack of cleavage. Additionally, the fusion protein that was created 
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is a chimeric protein that is not synthesized naturally within the cell; it contained only USP30’s 

IMS component, which was flanked by two other proteins, E2E3 and E2D1. Thus, the free peptide 

should also be digested in the presence of Omi to test for cleavage. Although SDS-PAGE and 

Coomassie Blue staining cannot be used to analyze the results, other methods such as mass 

spectrometry may be used in order to determine if cleavage has occurred. Future work should focus 

on testing cleavage in the different conditions outlined above.  
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