You are here

COMPARISON OF SQUARE-HOLE AND ROUND-HOLE FILM COOLING: A COMPUTATIONAL STUDY

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
Film cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately downstream of the exit of a film cooling hole, a so-called horseshoe vortex structure consisting of a pair of counter-rotating vortices is formed. This vortex formation has an effect on the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices is dependent upon the shape of the film cooling holes, and therefore so is the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for circular and square hole cases for blowing ratios of 0.33, 0.50, 0.67, 1.00, and 1.33. The film cooling effectiveness values obtained are compared with experimental and computational data of Yuen and Martinez-Botas (2003a) and Walters and Leylek (1997). It was found that in the main flow portion of the domain immediately downstream of the cooling hole exit, there is greater lateral separation between the vortices in the horseshoe vortex pair for the case of the square hole. This was found to result in the square hole providing greater centerline film cooling effectiveness immediately downstream of the hole and better lateral film coolant coverage far downstream of the hole.
Title: COMPARISON OF SQUARE-HOLE AND ROUND-HOLE FILM COOLING: A COMPUTATIONAL STUDY.
35 views
12 downloads
Name(s): Durham, Michael Glenn, Author
Kapat, Jay, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Film cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately downstream of the exit of a film cooling hole, a so-called horseshoe vortex structure consisting of a pair of counter-rotating vortices is formed. This vortex formation has an effect on the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices is dependent upon the shape of the film cooling holes, and therefore so is the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for circular and square hole cases for blowing ratios of 0.33, 0.50, 0.67, 1.00, and 1.33. The film cooling effectiveness values obtained are compared with experimental and computational data of Yuen and Martinez-Botas (2003a) and Walters and Leylek (1997). It was found that in the main flow portion of the domain immediately downstream of the cooling hole exit, there is greater lateral separation between the vortices in the horseshoe vortex pair for the case of the square hole. This was found to result in the square hole providing greater centerline film cooling effectiveness immediately downstream of the hole and better lateral film coolant coverage far downstream of the hole.
Identifier: CFE0000044 (IID), ucf:46080 (fedora)
Note(s): 2004-05-01
M.S.M.E.
College of Engineering and Computer Science, Department of Mechanical, Materials, and Aerospace Engineering
This record was generated from author submitted information.
Subject(s): film cooling
heat transfer
gas turbines
computational fluid dynamics
turbomachinery
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000044
Restrictions on Access: public
Host Institution: UCF

In Collections