You are here

NITRIFICATION INVESTIGATION AND MODELING IN THE CHLORAMINATED DRINKING WATER DISTRIBUTION SYSTEM

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
This dissertation consists of five papers concerning nitrification in chloraminated drinking water distribution systems in a one and a half year field study. Seven finished waters were produced from different treatment processes and distributed to eighteen pilot distribution systems (PDSs) that were made pipes taken from actual distribution systems. Unlined cast iron (UCI), galvanized steel (G), lined cast iron (LCI), and PVC pipes were used to build the PDSs. All finished waters were stabilized and chloraminated before entering the PDSs. This dissertation consists of five major parts.(1) System variations of nitrates, nitrites, DO, pH, alkalinity, temperature, chloramine residuals and hydraulic residence times (HRT) during biological nitrification are interrelated and discussed relative to nitrification, which demonstrated Stoichiometric relationships associated with conventional biochemical nitrification reactions. Ammonia is always released when chloramines are used for residual maintenance in drinking water distribution systems, which practically insures the occurrence of biological nitrification to some degree. Biological nitrification was initiated by a loss of chloramine residual brought about by increasing temperatures at a five day HRT, which was accompanied by DO loss and slightly decreased pH. Ammonia increased due to chloramine decomposition and then decreased as nitrification began. Nitrites and nitrates increased initially with time after the chloramine residual was lost but decreased if denitrification began. Dissolved oxygen limited nitrifier growth and nitrification. No significant alkalinity variation was observed during nitrification. Residual and nitrites are key parameters for monitoring nitrification in drinking water distribution systems.(2) Using Monod kinetics, a steady state plug-flow kinetics model was developed to describe the variations of ammonia, nitrite and nitrate-N concentrations in a chloraminated distribution system. Active AOB and NOB biomass in the distribution system was determined using predictive equations within the model. The kinetic model used numerical analysis and was solved by C language to predict ammonia, nitrite, nitrate variation.(3) Nitrification control strategies were investigated during an unexpected episode and controlled study in a field study. Once nitrification began, increasing chloramine dose from 4.0 to 4.5 mg/L as Cl2 and Cl2:N ratio from 4/1 to 5/1 did not stop nitrification. Nitrification was significantly reduced but not stopped, when the distribution system hydraulic retention time was decreased from 5 to 2 days. A free chlorine burn for one week at 5 mg/L Cl2 stopped nitrification. In a controlled nitrification study, nitrification increased with increasing free ammonia and Cl2:N ratios less than 5. Flushing with increased chloramine concentration reduced nitrification, but varying flush frequency from 1 to 2 weeks had no effect on nitrification.(4) HPC variations in a chloraminated drinking water distribution system were investigated. Results showed average residual and temperature were the only water quality variables shown to affect HPC change at a five day distribution system hydraulic residence time was five days. Once nitrification began, HPC change was correlated to HRT, average residual and generated nitrite-N in the distribution system. (5) Biostability was assessed for water treatment processes and distribution system pipe by AOCs, BDOCs, and HPCs of the bulk water, and by PEPAs of the attached biofilms. All membrane finished waters were more likely to be biologically stable as indicated by lower AOCs. RO produced the lowest AOC. The order of biofilm growth by pipe material was UCI > G > LCI > PVC. Biostability decreased as temperature increased.
Title: NITRIFICATION INVESTIGATION AND MODELING IN THE CHLORAMINATED DRINKING WATER DISTRIBUTION SYSTEM.
9 views
2 downloads
Name(s): Liu, Suibing, Author
Taylor, James, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation consists of five papers concerning nitrification in chloraminated drinking water distribution systems in a one and a half year field study. Seven finished waters were produced from different treatment processes and distributed to eighteen pilot distribution systems (PDSs) that were made pipes taken from actual distribution systems. Unlined cast iron (UCI), galvanized steel (G), lined cast iron (LCI), and PVC pipes were used to build the PDSs. All finished waters were stabilized and chloraminated before entering the PDSs. This dissertation consists of five major parts.(1) System variations of nitrates, nitrites, DO, pH, alkalinity, temperature, chloramine residuals and hydraulic residence times (HRT) during biological nitrification are interrelated and discussed relative to nitrification, which demonstrated Stoichiometric relationships associated with conventional biochemical nitrification reactions. Ammonia is always released when chloramines are used for residual maintenance in drinking water distribution systems, which practically insures the occurrence of biological nitrification to some degree. Biological nitrification was initiated by a loss of chloramine residual brought about by increasing temperatures at a five day HRT, which was accompanied by DO loss and slightly decreased pH. Ammonia increased due to chloramine decomposition and then decreased as nitrification began. Nitrites and nitrates increased initially with time after the chloramine residual was lost but decreased if denitrification began. Dissolved oxygen limited nitrifier growth and nitrification. No significant alkalinity variation was observed during nitrification. Residual and nitrites are key parameters for monitoring nitrification in drinking water distribution systems.(2) Using Monod kinetics, a steady state plug-flow kinetics model was developed to describe the variations of ammonia, nitrite and nitrate-N concentrations in a chloraminated distribution system. Active AOB and NOB biomass in the distribution system was determined using predictive equations within the model. The kinetic model used numerical analysis and was solved by C language to predict ammonia, nitrite, nitrate variation.(3) Nitrification control strategies were investigated during an unexpected episode and controlled study in a field study. Once nitrification began, increasing chloramine dose from 4.0 to 4.5 mg/L as Cl2 and Cl2:N ratio from 4/1 to 5/1 did not stop nitrification. Nitrification was significantly reduced but not stopped, when the distribution system hydraulic retention time was decreased from 5 to 2 days. A free chlorine burn for one week at 5 mg/L Cl2 stopped nitrification. In a controlled nitrification study, nitrification increased with increasing free ammonia and Cl2:N ratios less than 5. Flushing with increased chloramine concentration reduced nitrification, but varying flush frequency from 1 to 2 weeks had no effect on nitrification.(4) HPC variations in a chloraminated drinking water distribution system were investigated. Results showed average residual and temperature were the only water quality variables shown to affect HPC change at a five day distribution system hydraulic residence time was five days. Once nitrification began, HPC change was correlated to HRT, average residual and generated nitrite-N in the distribution system. (5) Biostability was assessed for water treatment processes and distribution system pipe by AOCs, BDOCs, and HPCs of the bulk water, and by PEPAs of the attached biofilms. All membrane finished waters were more likely to be biologically stable as indicated by lower AOCs. RO produced the lowest AOC. The order of biofilm growth by pipe material was UCI > G > LCI > PVC. Biostability decreased as temperature increased.
Identifier: CFE0000039 (IID), ucf:46151 (fedora)
Note(s): 2004-05-01
Ph.D.
College of Engineering and Computer Science, Department of Civil and Environmental Engineering
This record was generated from author submitted information.
Subject(s): Nitrification
Distribution system
Drinking Water
Chloramine
Disinfection
Modeling
Biostability
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000039
Restrictions on Access: public
Host Institution: UCF

In Collections