You are here

DYNAMIC SHARED STATE MAINTENANCE IN DISTRIBUTED VIRTUAL ENVIRONMENTS

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. In a distributed interactive VE the dynamic shared state represents the changing information that multiple machines must maintain about the shared virtual components. One of the challenges in such environments is maintaining a consistent view of the dynamic shared state in the presence of inevitable network latency and jitter. A consistent view of the shared scene will significantly increase the sense of presence among participants and facilitate their interactive collaboration. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model.A review of the literature illustrates that the techniques for consistency maintenance in distributed Virtual Reality (VR) environments can be roughly grouped into three categories: centralized information management, prediction through dead reckoning algorithms, and frequent state regeneration. Additional resource management methods can be applied across these techniques for shared state consistency improvement. Some of these techniques are related to the systems infrastructure, others are related to the human nature of the participants (e.g., human perceptual limitations, area of interest management, and visual and temporal perception).An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for sensor-based distributed VE that has the potential to improve the system real-time behavior and scalability.
Title: DYNAMIC SHARED STATE MAINTENANCE IN DISTRIBUTED VIRTUAL ENVIRONMENTS.
60 views
35 downloads
Name(s): Hamza-Lup, Felix George, Author
Hughes, Charles, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. In a distributed interactive VE the dynamic shared state represents the changing information that multiple machines must maintain about the shared virtual components. One of the challenges in such environments is maintaining a consistent view of the dynamic shared state in the presence of inevitable network latency and jitter. A consistent view of the shared scene will significantly increase the sense of presence among participants and facilitate their interactive collaboration. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model.A review of the literature illustrates that the techniques for consistency maintenance in distributed Virtual Reality (VR) environments can be roughly grouped into three categories: centralized information management, prediction through dead reckoning algorithms, and frequent state regeneration. Additional resource management methods can be applied across these techniques for shared state consistency improvement. Some of these techniques are related to the systems infrastructure, others are related to the human nature of the participants (e.g., human perceptual limitations, area of interest management, and visual and temporal perception).An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for sensor-based distributed VE that has the potential to improve the system real-time behavior and scalability.
Identifier: CFE0000096 (IID), ucf:46152 (fedora)
Note(s): 2004-08-01
Ph.D.
College of Engineering and Computer Science, School of Computer Science
This record was generated from author submitted information.
Subject(s): Distributed Systems
Virtual Environments
Augmented Reality
Delay Compensation
Algorithms
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000096
Restrictions on Access: public
Host Institution: UCF

In Collections