You are here

STUDY FOR DEVELOPMENT OF A BLAST LAYER FOR THE VIRTUAL RANGE PROJECT

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
In this work we develop a Blast-Propellant-Facility integrated analysis study, which evaluates, by using two different approaches, the blast-related impact of an explosive accident of the Space Shuttle during the first ten seconds after launch at Kennedy Space Center. The blast-related risk associated with an explosion at this stage is high because of the quantity of energy involved in both multiple and complex processes. To do this, one of our approaches employed BlastFX®, a software system that facilitates the estimation of the level of damage to people and buildings, starting from an explosive device and rendering results through a complete report that illustrates and facilitates the evaluation of consequences. Our other approaches employed the Hopkinson-Cranz Scaled Law for estimating similar features at a more distant distance and by evaluating bigger amounts of TNT equivalent. Specifically, we considered more than 500 m and 45,400 kg, respectively, which are the range and TNT content limits that our version of BlastFX® can cover. Much research has been done to study the explosion phenomena with respect to both solid and liquid propellants and the laws that underlie the blast waves of an explosion. Therefore our methodology is based on the foundation provided by a large set of literature review and the actual capacities of an application like BlastFX®. By using and integrating the lessons from the literature and the capabilities of the software, we have obtained very useful information for evaluating different scenarios that rely on the assumption, which is largely studied, that the blast waves' behavior is affected by the distance. All of this has been focused on the Space Shuttle system, in which propellant mass represents the source of our analysis and the core of this work. Estimating the risks involved in it and providing results based on different scenarios augments the collective knowledge of risks associated with space exploration.
Title: STUDY FOR DEVELOPMENT OF A BLAST LAYER FOR THE VIRTUAL RANGE PROJECT.
0 views
0 downloads
Name(s): Rosales, Sergio, Author
Sepulveda, Jose, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this work we develop a Blast-Propellant-Facility integrated analysis study, which evaluates, by using two different approaches, the blast-related impact of an explosive accident of the Space Shuttle during the first ten seconds after launch at Kennedy Space Center. The blast-related risk associated with an explosion at this stage is high because of the quantity of energy involved in both multiple and complex processes. To do this, one of our approaches employed BlastFX®, a software system that facilitates the estimation of the level of damage to people and buildings, starting from an explosive device and rendering results through a complete report that illustrates and facilitates the evaluation of consequences. Our other approaches employed the Hopkinson-Cranz Scaled Law for estimating similar features at a more distant distance and by evaluating bigger amounts of TNT equivalent. Specifically, we considered more than 500 m and 45,400 kg, respectively, which are the range and TNT content limits that our version of BlastFX® can cover. Much research has been done to study the explosion phenomena with respect to both solid and liquid propellants and the laws that underlie the blast waves of an explosion. Therefore our methodology is based on the foundation provided by a large set of literature review and the actual capacities of an application like BlastFX®. By using and integrating the lessons from the literature and the capabilities of the software, we have obtained very useful information for evaluating different scenarios that rely on the assumption, which is largely studied, that the blast waves' behavior is affected by the distance. All of this has been focused on the Space Shuttle system, in which propellant mass represents the source of our analysis and the core of this work. Estimating the risks involved in it and providing results based on different scenarios augments the collective knowledge of risks associated with space exploration.
Identifier: CFE0000190 (IID), ucf:46171 (fedora)
Note(s): 2004-12-01
M.S.
Engineering and Computer Science, Department of Industrial Engineering and Management Systems
Masters
This record was generated from author submitted information.
Subject(s): Blast effects
Explosions
Explosives
Propellants
Scaling Law
Space Shuttle
Virtual Range
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000190
Restrictions on Access: public
Host Institution: UCF

In Collections