You are here

MONOLITHIC INTEGRATION OF DUAL OPTICAL ELEMENTS ON HIGH POWER SEMICONDUCTOR LASERS

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of 65%, the highest reported for a grating-coupled device, can be achieved by lowering the substrate reflectivity using a 200nm period tapered subwavelength grating that has a grating wavevector oriented parallel to the electric field polarization. The low reflectivity structure shows trapezoidal sidewall profiles obtained using a soft mask erosion technique in a single etching step. Finally, we demonstrate that, unlike typical methods reported so far for in-plane beam-shaping of laser diodes, the integration of a beam-splitting element on the device substrate does not affect the device efficiency. The proposed device configuration can be tailored to satisfy a wide range of applications including high power pump lasers, superluminescent diodes, or optical amplifiers applications.
Title: MONOLITHIC INTEGRATION OF DUAL OPTICAL ELEMENTS ON HIGH POWER SEMICONDUCTOR LASERS.
41 views
18 downloads
Name(s): vaissie, laurent, Author
Johnson, Eric, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of 65%, the highest reported for a grating-coupled device, can be achieved by lowering the substrate reflectivity using a 200nm period tapered subwavelength grating that has a grating wavevector oriented parallel to the electric field polarization. The low reflectivity structure shows trapezoidal sidewall profiles obtained using a soft mask erosion technique in a single etching step. Finally, we demonstrate that, unlike typical methods reported so far for in-plane beam-shaping of laser diodes, the integration of a beam-splitting element on the device substrate does not affect the device efficiency. The proposed device configuration can be tailored to satisfy a wide range of applications including high power pump lasers, superluminescent diodes, or optical amplifiers applications.
Identifier: CFE0000223 (IID), ucf:46253 (fedora)
Note(s): 2004-12-01
Ph.D.
Optics and Photonics, Other
Doctorate
This record was generated from author submitted information.
Subject(s): integrated optics
semiconductor lasers
diffractive optics
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000223
Restrictions on Access: public
Host Institution: UCF

In Collections