You are here

CIRCUIT DESIGN AND RELIABILITY OF A CMOS RECEIVER

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
This dissertation explores CMOS RF design and reliability for portable wireless receivers. The objective behind this research is to achieve an increase in integration level, and gain more understanding for RF reliability. The fields covered include device, circuit and system. What is under investigation is a multi-band multi-mode receiver with GSM, DCS-1800 and CDMA compatibility. To my understanding, GSM and CDMA dual-mode mobile phones are progressively investigated in industries, and few commercial products are available. The receiver adopts direct conversion architecture. Some improved circuit design methods are proposed, for example, for low noise amplifier (LNA). Except for band filters, local oscillators, and analog-digital converters which are usually implemented by COTS SAW filters and ICs, all the remaining blocks such as switch, LNA, mixer, and local oscillator are designed in MOSIS TSMC 0.35ìm technology in one chip. Meanwhile, this work discusses related circuit reliability issues, which are gaining more and more attention. Breakdown (BD) and hot carrier (HC) effects are important issues in semiconductor industry. Soft-breakdown (SBD) and HC effects on device and RF performance has been reported. Hard-breakdown (HBD) effects on digital circuits have also been investigated. This work uniquely address HBD effects on the RF device and circuit performance, taking low noise amplifier and power amplifier as targets.
Title: CIRCUIT DESIGN AND RELIABILITY OF A CMOS RECEIVER.
21 views
10 downloads
Name(s): Yang, Hong, Author
Yuan, Jiann, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation explores CMOS RF design and reliability for portable wireless receivers. The objective behind this research is to achieve an increase in integration level, and gain more understanding for RF reliability. The fields covered include device, circuit and system. What is under investigation is a multi-band multi-mode receiver with GSM, DCS-1800 and CDMA compatibility. To my understanding, GSM and CDMA dual-mode mobile phones are progressively investigated in industries, and few commercial products are available. The receiver adopts direct conversion architecture. Some improved circuit design methods are proposed, for example, for low noise amplifier (LNA). Except for band filters, local oscillators, and analog-digital converters which are usually implemented by COTS SAW filters and ICs, all the remaining blocks such as switch, LNA, mixer, and local oscillator are designed in MOSIS TSMC 0.35ìm technology in one chip. Meanwhile, this work discusses related circuit reliability issues, which are gaining more and more attention. Breakdown (BD) and hot carrier (HC) effects are important issues in semiconductor industry. Soft-breakdown (SBD) and HC effects on device and RF performance has been reported. Hard-breakdown (HBD) effects on digital circuits have also been investigated. This work uniquely address HBD effects on the RF device and circuit performance, taking low noise amplifier and power amplifier as targets.
Identifier: CFE0000212 (IID), ucf:46259 (fedora)
Note(s): 2004-12-01
Ph.D.
Engineering and Computer Science, Department of Electrical and Computer Engineering
Doctorate
This record was generated from author submitted information.
Subject(s): Integrated circuit design
circuit optimization
circuit reliability
dielectric breakdown
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000212
Restrictions on Access: campus 2014-01-31
Host Institution: UCF

In Collections