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ABSTRACT 
 

 

Sequences are sufficient to describe topological properties in metric spaces or, 

more generally, topological spaces having a countable base for the topology. However, 

filters or nets are needed in more abstract spaces. Nets are more natural extension of 

sequences but are generally less friendly to work with since quite often two nets have 

distinct directed sets for domains. Operations involving filters are set theoretic and 

generally certain to filters on the same set. The concept of a filter was introduced by H. 

Cartan in 1937 and an excellent treatment of the subject can be found in N. Bourbaki 

(1940). 
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CHAPTER 1 

INTRODUCTION AND EXAMPLES 

 

The study of filters is a very natural way to describe convergence in general 

topological space. Filters were introduced in 1937 by Cartan (1937 a,b). Bourbaki (1940) 

employed filters in order to prove several results in their text . In the same year Tukey 

(1940) studied sets, filters, and various modifications of the two concepts. A complete 

reliance on filters for the development of topology can be found in Kowalsky (1961). 

There are traces of the concept of filters as early as 1914 in Root’s article. More recently, 

filters play a fundamental role in the development of fuzzy spaces which have 

applications in computer science and engineering. Filters are also an important tool used 

by researchers describing non-topological convergence notions in functional analysis. 

(e.g see Beattie and Butzmann,2002). Moreover, Preuss (2002) has applied filters 

throughout his book on categorical topology. 

The purpose of this paper is to provide thorough discussion of filters and their 

applications. Filters are used in general topology to characterize such important concepts 

as continuity, initial and final structures, compactness, etc. 

The following examples are given to show that sequences are not sufficient to 

characterize points of closure, continuity, and compactness. 

Example 1.1 let X to be an uncountable set and fix Xx ∈0 . 

Define ( ) ( ){ }countableisAandAxorAxXA c∈∉⊆= 00:τ . Then τ is a topology for X. 

(a) τφ ∈X,  
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(b) A, B τ∈ implies that A∩B τ∈  

(c) JA ∈∈ ατα , implies that τα
α

∈∪ A . The latter holds since if 
00 αAx ∈ for some 0α , 

then which is countable. Thus,cc
c

AAA
0αα

α
α

α
⊆=⎟

⎠
⎞

⎜
⎝
⎛ ∩∪ τα

α
∈∪ A . 

We claim that  if and only if xxn ⎯→⎯τ xxn =  eventually ( ie Nnxxn ≥∀= ). 

(a) Suppose that . Since{ }0xx ≠ τ∈x ,  if  and only if xxn ⎯→⎯τ xxn =  eventually. 

(b) Suppose that 0xx = and for infinitely many n. Define F=0xxn ≠ { }0: xxx nn ≠ . Then 

 and eventually fails to hold. Hence τ∈cF c
n Fx ∈ 0xxn ≠  infinitely often. Therefore, 

does not converge to . Conversely, if does not converge to , then there exist nx 0x nx 0x

τ∈O ,  such that  infinitely often. That is, Ox ∈0 Oxn ∉ 0xxn ≠  infinitely often. Hence, 

 if and only if eventually. 0xxn ⎯→⎯τ
0xxn =

A: { }cxx 00 ∈  but it does not exist a sequence { }nx  in { }cx0  such that . 0xxn ⎯→⎯τ

If , then  for all  and by above results, does not converge to 

. Hence,  there is no sequence contained in 

{ }c
n xx 0∈ 0xxn ≠ 1≥n nx

0x { }cx0  that converges to . However, 0x

{ }cxx 00 ∈  since  for each { } φ≠∩ cxO 0 τ∈O , Ox ∈0 . And therefore, sequences do not 

characterize points of closure. 

B: Let σ  be the discrete topology for X, ie σ is the set of all subsets of X. One can see 

that  if and only if 0xxn ⎯→⎯σ
0xxn = eventually. Hence, σ  and τ  have the same 

convergent sequences. Let the Id: ( ) ( )στ ,, XX →  denote the identity function. The 
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function Id is sequentially continuous since τ and σ  have the same convergent 

sequences. However, since στ ⊂ , the above function is not continuous. Hence, 

sequences do not characterize continuity. 

Example1.2 Let ( be a metric space that is not compact. And let )dX , ( )** ,τX  be the 

Stone-Cech compactification of . Since ),( dX ( )dX ,  is not sequentially compact, there 

exist {  contained in X which has no convergent subsequence in . It is known 

that no sequence contained in X converges to a point in 

}nx ),( dX

XX −* . Hence, ( )** ,τX  is not 

sequentially compact. Therefore, sequences do not characterize compactness. 
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CHAPTER 2 

FILTERS 

 

Definition 2.1 Consider an arbitrary set X. A set τ  of subsets of X satisfying the 

conditions: 

(a) τφ ∈  and  X τ∈   

(b) U τ∈∩V  whenever τ∈u  and τ∈V  

(c) The union of the members of an arbitrary subset of  τ  belongs to τ  

is called a topology on X. A topological space is a pair ( )τ,X   where τ  is a topology 

on  X. 

The members of τ  are called open sets. 

Definition 2.2 Consider a set .φ≠X  A filter F on X is a set of subsets of X 

satisfying the conditions: 

(a) F φ≠  and ∉φ F 

(b) If F then ∈BA, ∈∩ BA F 

(c) If ∈A F and  then A B X⊆ ⊆ ∈B F 

A subset  ⊆β  F is called a base for the filter F  if every member of F contains 

some member of .β  The definition of a filter base for some filter is as follows: 

Definition 2.3: β  is called a base for a filter on X if and only if β  is a set of subsets of 

X  satisfying the conditions: 

(a) φβ ≠ , βφ ∉  
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(b) 1B ,  2 3B Bβ β∈ ⇒ ∃ ∈  such that 213 BBB ∩⊆ . 

Example 2.4 Let φ≠X  be an arbitrary set. Fix Xx ∈0 and then  

0x&  = { }  is a filter on X. AxandXAA ∈⊆ 0:  

Note that  { } . 0x 0x&∈

Example 2.5 Fix a set ,0 XA ⊆⊄φ then =0A& { }0: ABXB ⊇⊆  is a filter on X. In 

particular, if = X, 0A X& ={  is the “smallest” possible filter on X. }X

Example 2.6 If X is any nonempty set and { }nx is a sequence in X. Define  

nB = { . Then, F = }1: ≥≥ nkxk }1:{ ≥∃⊇⊆ nBAXA n  is a filter on X and is called the 

elementary filter determined by { }nx . 

Example 2.7   If X is an infinite set then F={ }finiteisFXF c:⊆   a filter on X and is 

called the cofinite or Fréchet filter.  

Example 2.8   If X is a topological space and Xx∈ , then the family U(x) of all 

neighborhoods of x is a filter and is called the neighborhood filter of x. 

Example 2.9 The family of all ‘tails’ of the sequence { }nx  on X is a base for the 

corresponding elementary filter; a tail is the set of the form = NB { }:nx n N≥ . 

Example 2.10 The family is a base for the filter  on X. { }{ }x x&

Let F (X) denote the set of all filters on a set X and F, G ∈  F (X). We call a filter G 

finer than the filter F if F⊆  G, we also call F coarser that G.  Note that F = {X} is the 

coarsest member in F (X). It is easy to verify that ( ≤),(XF  ) is a poset.  
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Also,  is not linearly ordered since ),( ≤XF x& ⊄   or  y& y& ⊄ x& . Before discussing filter 

and convergence, one wants to prove and define various things about filters. DeMorgan’s 

law states that if φ≠X  and{ }IA ∈αα :  is a collection of subsets of X. Then: 

(a) ( )  = c
i

I
A∪

∈α

c

I
Aαα∈

∩  

(b)  = ( )c
i

I
A∩

∈α

c

I
Aαα∈

∪  

Proposition 2.11 Assume that X φ≠  and )(XF∈αF , I∈α  (index set) then 

 is the finest filter on X which is coarser than each )(XF∈∩ αF αF , I∈α .  

Proof (a): Note that αφ F∉ , Iα ∈ , implies that αφ
α

F∩
∈

∉
I

 and also X belongs to 

each , αF I∈α . 

Thus X∈  and it follows that   αF∩
∈∂ I

αF∩
∈∂ I

φ≠ . 

(b): Let A, B ∈  ;  then  A and B belong  to each .  Therefore, A  B  belongs to 

each ,

α
α

F∩
∈I

αF ∩

αF Iα ∈ ,  and thus A  B∩ ∈ α
α

F∩
∈I

. 

(c): Let A∈  ;  then A ∈  each ,  α
α

F∩
∈I

αF Iα ∈ . Let B ⊇  A thus B belongs to each  

since B is an over set of A. It follows that B

αF

∈  α
α

F∩
∈I

. Since (a), (b) and (c) are satisfied, 

  is a filter. Clearly , for each α
α

F∩
∈I

α
α

F∩
∈I

⊆ αF ∈α I. 
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Next, let   for each αFG⊆ Iα ∈  and let us prove  that G ⊆ α
α

F∩
∈I

. Let A ∈  G; thus  A 

belongs to each , αF Iα ∈ ,  and then A∈  α
α

F∩
∈I

. It follows that  G .▫  ⊆ α
α

F∩
∈I

In general, the union of two filters may or may not be a filter. For example, if F and G 

may contain disjoint members.  

Proposition 2.12 Let , αF Iα ∈ , be filters on X.  Then  

α
α

F∩
∈I

={ }ααα
α

F∈=⊆ ∪
∈

FsomeforFAXA
I

:  

Proof Let B∈ ; then  B belongs to each   and thus B = by choosing each 

= B . Conversely, Let B∈

α
α

F∩
∈I

αF α
α

F
I
∪
∈

αF { }ααα
α

F∈=⊆ ∪
∈

FsomeforFAXA
I

:  , 

thus  B =   for some   and thus B belongs to each . Hence  α
α

F
I
∪
∈

αF ∈ αF αF

B ∈    ▫  α
α

F∩
∈I

Let YX ⊆⊆φ  . If  , then F is a filter base on Y. That is  

 is a filter on Y generated by F. The generated filter is denoted by 

[F ]. Conversely, if G is a filter on Y and G X

)(XF∈F

{ F∈∃⊆⊆ FAFYA : }

φ∩ ≠  for each G∈  G , then  

F =  F(X). This filter is called the induced filter on X, or the trace of G 

on X. 

{ G∈∩ GXG : }∈

Example 2.13 Let [0,1],X Y R= =  and let G be the filter on Y whose base is 

( ){ }, : 0ε ε ε− > . Then the trace of G on X is the filter on X having a base [ ]{ }0:,0 >εε . 
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CHAPTER 3 

ULTRAFILTERS 

 

Definition 3.1 An ultrafilter is a maximal filter in the poset  ( )( ),F X ≤ ,where the 

ordering F ≤G means that F ⊆G.  That is a filter U  on X is an ultrafilter provided 

U⊆G  implies that U =G. 

Proposition 3.2 ( Zorn’s lemma ) If X is partially ordered set in which every linearly 

ordered subset ( any two elements are comparable ) has an upper bound , then X has a 

maximal element. That is, there exists x X∈ such that there is no y x≠  with x y≤ . 

Proposition 3.3 Let  X  be a set and F a filter on X. Then there exists an ultrafilter U on X 

that is finer than F..  

Proof: Consider the family P={ } F GG thanfinerthatfilteraisXF :)(∈ . The family P 

is partially ordered by . Suppose that C = ⊆ { }I∈αα :G is a chain in P. That is C is 

linearly ordered subset of P for each P∈G .  

Denote  H=∪ { }I∈αα :G ={ }IAA ∈∃∈ ααG:  

(a) PF ∈  by construction, thus H φ≠  

(b) ∉φ H  since G∉φ ,  for each P∈G  

(c ) Let A, B∈H; then  A∈ , B βG ∈ βG  for some ,α β . Now, either  ⊆  or    

holds. Then A, B ∈  and  thus  A

βG αG βG ⊆ αG

βG ∩  B∈ βG  since  is a filter. Then, A  B∈H. βG ∩

(d) If A∈H then A∈   for some αG αG ∈  C .  If B⊇A then B∈ αG  and thus B∈  H. 
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Therefore, H is a filter and hence an upper bound for C  in P  The partially ordered set 

P satisfies the assumptions of Zorn’s lemma; hence there is a maximal element  

U∈P. Therefore, U is an ultrafilter containing F.▫  

Proposition 3.4 Let F be a filter on a set X;  then, the following are equivalent: 

(a) F is an ultrafilter. 

(b) For any two subsets  A and B of X we have: If A U B F∈   then A F∈ or B F∈ . 

c) For every subset A of X either A F∈  or A c F∈ . 

Proof (a) ⇒ (b): Assume A U B F∈  and A∉F and B∉F. 

Define  ; then G }{ FG ∈∪⊆= CAXC : ∈ F(X) .Further,  F   G ,  B∈ G and  

thus  F  G. But F is an ultrafilter. Thus, there  is a contradiction. Therefore, A

⊆

≠ F∈  or  B 

F∈ . 

(b)  (c): Clearly ; therefore A ⇒ F∈=∪ XAA c F∈ or ∈cA F  using(b). 

(c) ⇒  (a): Let G  be a filter that is finer than F  and let A∈G  be arbitrary. Then 

F because A has nonempty intersection with every element of F. It follows that 

A

∉cA

F∈ . Thus, G = F. ▫ 

Proposition 3.5 Let F ∈F(X). Then: 

F =  ∩  { }Xon an is: rultrafilte U ,F U U ⊇

Proof Clearly F⊆ .  Assume that there exists an 

A∈ ∩  such that A

∩ { }Xon an is: rultrafilte U ,F U U ⊇

{ }Xon an is: rultrafilte U ,F ⊇U U ∉F. Then  AF ∩ c φ≠ for 

each F F∈ and thus }{ F∈∩= FAF c :β  is a base for a filter G. Note that  F ⊆ G. 
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Let  be an ultrafilter containing G. Since, F  , AGU ⊆ GU ∈ GU . However, G 

  and thus A∈ , a contradiction. Therefore,  

cA ∈

⊆ GU cA ∩ GU

F  = . ∩ { }Xon an is: rultrafilteF U U ⊇  U ,

Proposition 3.6 Let U  be an ultrafilter on the set X. If  are subsets of X  such 

that   belongs to U, then at least one of the sets   belongs to U. 

1 2..., nA A A

i

n

i
A∪

=1
iA

Proof If no  belongs to U, then   belongs to U  for iA c
iA ni ,....,2,1=  by Proposition 2.3, 

and  hence    belongs to U, which is impossible since   is given to 

belong to U.. 

c
i

c
i AA )(∪=∩ i

n

i
A∪

=1

Proposition 3.7 let U  be an ultrafilter on X and A  X such that  ⊆

U A∩ φ≠  for all U ∈U. Then A ∈U. 

Proof Assume that  A ∉U and defineβ  = { }U∈∩ UAU : . Note that  

φ ∉ β  and β φ≠  since U A ∩ φ≠  for all U∈U . Also, 

=( ( )AUAU ∩∩∩ 21 ) ( ) β∈∩∩ AUU 21  since ( )∈∩ 21 UU U. Thus β  is a base 

filter for some filter G.Note that A∈G  because A ⊇  U∩A and A∈  U. 

  Therefore,  U  G, a contradiction and hence A⊂ ∈U. 

Proposition 3.8 Let f : X →  Y be a function and U  is an ultrafilter on X. Then  f (U ) is 

an ultrafilter on Y.  

Proof Assume that ; then for each U( )A f∉ U ∈U, ( ) φ≠∩ UfAc . 
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Hence, ( ) φ≠∩− UAf c1  for each  U∈U  and thus by  Proposition 2.6, ( )∈− cAf 1 U.  

Therefore, ( )( ) ( )UfAff c ∈−1  and thus ( )UfAc ∈  since . Hence,  f (U) 

is an ultrafilter on Y.▫ 

cc AAff ⊆− ))(( 1
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CHAPTER 4 

CONVERGENCE AND FILTERS 

 

Definition 4.1 Let  ( )τ,X  be a topological space and let U (x) denote the neighborhood 

filter at x. A filter F on X converges to x if  U (x) ⊆ F. 

Proposition 4.2 Let  A be a subset of a topological space X. Then, for x∈  X,   

x∈  Ā  if and only if there exists a filter on X which contains A and converges to x.  

Proof Assume that x∈  Ā.  Then any neighborhood of x has a nonempty intersection with 

A.  Now all the sets A  U, where U is a neighborhood of x, form a filter base, and the 

corresponding filter converges to x. Conversely, assume that F is a filter containing A and 

converging to x . Choose any neighborhood U of x.  Then U

∩

∈F , and thus  

U  A ≠∩ φ  since A ∈F. This proves that x∈  Ā. 

Definition 4.3 A topological space ( τ,X ) is Hausdorff or T 2  provided if , then 

there exist sets 

yx ≠

τ∈yx OO ,  such that yx OyOx ∈∈ ,  and  φ=∩ yOOx . 

Proposition 4.4 ),( τX  is T  if and only if each filter converges to at most one point,  i.e. 

F   implies x=y.   

2

yx,⎯→⎯τ

Proof Suppose that ),( τX  is Hausdorff and suppose F  where . yx,⎯→⎯τ yx ≠

Then there exist τ∈yx OO ,   such that yx OyOx ∈∈ ,   and φ=∩ yx OO .However, 

F   implies that  ∈F, yx,⎯→⎯τ
xO yO ∈F, and 
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xO ∩ yO =φ ∈F which is a contradiction. Therefore, each filter converges to at most one 

point. Conversely, suppose that yx ≠  and assume that φ≠∩ yx OO  for each 

τ∈yx OO , ,  yx OyOx ∈∈ ,

We claim that },,,:{ yxyxyx OyOxOOOO ∈∈∈∈∀∩= ττβ  is a base for some filter 

F.Observe that  ( )  yx OO ∩ ∩ β∈∩∩∩=∩ )()()( yyxxyx GOGOGG  since  

is an open set containing x and

)( xx GO ∩

)( yy GO ∩  is an open set containing  y. Thus β  is a base 

for some filter F since )( yxx OOO ∩⊇  implies that each xO ∈F,  

F converges to x. Likewise,   )( yxy OOO ∩⊇  implies that yO ∈F, and thus F converges 

to y, a contradiction. Therefore, there doesn’t exist an  and    such thatxO yO φ≠∩ yx OO  

where  and . Hence (xOx∈ yOy∈ τ,X )  is Hausdorff. 

The following result shows that continuity of maps between topological spaces can be 

characterized in terms of convergence of filters. Recall that a mapping  

g: X→Y  between two topological spaces is continuous at x provided that for each 

neighborhood V of g ( x ), there exist a neighborhood U of x such that   

g(U)  V. ⊆

Proposition 4.5 Let  X, Y be topological spaces with x X∈  and  

g: X . Then g is continuous at x if and only if whenever F is a filter such that  F  

x,   g(F ) g(x). 

Y→ →

→

Proof  Suppose g is continuous at x and  F  x. Let V be a neighborhood of g(x). By 

continuity there is a neighborhood U of x such that  g(U) ⊆  V.  Since  U∈  F, 

→
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g(U)∈g(F ). And thus V∈  g(F ). Hence g (F ) →  g(x). Conversely, suppose that 

whenever  F →  x,   g(F)  g (x). Then → ( )( ) ( )xgxUg →  by hypothesis. Then, for each 

neighborhood V of g (x),  V∈ ( )( xUg ) . Then there exists a U ∈U(x) such that  

g (U)  V and thus g is continuous at x. ⊆
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CHAPTER 5 

COMPACTNESS AND FILTERS 

 

Recall that a topological space ( )τ,X  is compact provided each open covering of 

X has a finite subcovering . It is shown below that compactness can be characterized in 

terms of convergence of ultrafilters. 

Proposition 5.1 Let ( ),X τ  be a topological space. Then the following statements are 

equivalent: 

(a) ( ),X τ  is compact 

(b) Each ultrafilter on X converges 

(c) { }:A A φ∩ ∈ ≠F  for each filter on X 

Proof (a) (b): Suppose (⇒ ),X τ  is compact and that there exist an ultrafilter F  that 

doesn’t converge. Then for each x X∈ , there exists F∉xV V and thus { }:xC V x X= ∈  

is an open cover of X.  Hence . =X. Since F is an ultrafilter, implies that 

for each  and therefore ,  which is a contradiction. 

Thus, each ultrafilter on X converges.  

1

n

i=
∪ ixV

F∈c
xV Xx∈ F∈==∩

=

φc
x

n

i

c
i

VX
1

(b) (c): Given any filter F on X; let G  be an ultrafilter containing F. Then G converges 

to x in (

⇒

),X τ , for some . Given any neighborhood V of x and x X∈ ∈A F; then ∈A G 

and V∈G. Hence,  G  and thus∈∩VA A V φ∩ ≠ . Therefore, x A∈ . 
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(c)⇒ (a): Suppose ( )τ,X  is not compact. Let C ={ }JO ∈αα :  be an open cover of X 

with no finite subcover. Then, ,  for each  n. Let F be the filter on  X whose    

base .However,  

XO
i

n

i
≠∪

=
α

1

⎭
⎬
⎫

⎩
⎨
⎧ ∈≥∩

=

COnOc
n

i
i αα ,1:

1
φααα ==∪=∩⊆∈∩

∈

cc

J
XOOAA )(}:{ F , 

which is a contradiction. 

Proposition 5.2 Let ),(),(: στ YXf →   be a continuous function and onto. If ),( τX   is 

compact then ),( σY  is compact.  

Proof Let U be an ultrafilter on Y , F = ( )U1−f  and by Proposition2.2 there exist an 

ultrafilter on X.  G⊇F. Then:  , for some x⎯→⎯τG Xx∈  since ( ),X τ  is compact. 

The continuity assumption of  f  implies that f (G )  f(x) according to Proposition 4.6. →

Since G F then (G)  f ( F ) =f (f ⊇ f ⊇
1−
( U))⊇  U.  Also f  is onto and thus 

f (f (U))= U. Hence,  f(G )  U and since U is an ultrafilter  f ( G ) = U. 
1−

⊇

Consequently,   f (G )  f (x) implies that  U →  f(x). Therefore, by  →

Proposition 4.1, ),( σY  is compact. 
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CHAPTER 6 

INITIAL STRUCTURES 

 

Proposition 6.1 Consider the source ( ) JYX f ∈⎯→⎯ αταα
α ,, where J, is an index class. 

Then: 

(a) There exists a coarsest (smallest) topology Iτ  on X for which each 

( ) (: , ,If X Y )α α ατ τ→  is continuous, Jα ∈ . 

(b) Each g: ),(),( IXY τσ →  is continuous if and only if ),(),(: ααα τσο YYgf →  is 

continuous, for each J∈α . 

(c) Iτ  is the unique topology for X which obeys (b) 

(d) Given ,    if and only if( )XF∈F ixI⎯→⎯τF ( ) ( )α
τ

α xff I⎯→⎯F  

for each J∈α . 

Proof A subbase for Iτ  is S ={ }
ατααα ∈

− OOf :)(1   . 

(a) It easily follows that Iτ  is the coarsest such topology such that each fα  is continuous. 

(b) The composition of two continuous functions in continuous. Conversely, assume that  

gf ο  is continuous, for each ∈α J. Let S then,  

 and thus, 

∈− )(1
αα Of

σο αααα ∈= −−− )()())(( 111 OgfOfg ( )( ) σαα ∈−− Ofg 11  

Since continuity of g: ),(),( IXY τσ → is  determined  by the subbase  S  for Iτ , it  
 
follows that g: ),(),( IXY τσ →  is continuous. 
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(c) Let Xτ  be another topology for X obeying (b). Since id: ),(),( XI XX ττ →  is 

continuous, ),(),(: ααα ττ YXf X → is continuous, for each J∈α . Hence by (a), XI ττ ⊆ . 

Moreover, consider id: ),(),( IX XX ττ →   .  

Since ( ) ),(,: αααα ττο YXidff I →= is continuous for each J∈α , the hypothesis 

implies that id: ),(),( XI XX ττ → is continuous. Hence, X Iτ τ⊆  and thus X Iτ τ= . 

(d) Since each ( ) ( ): , ,If X Yα α ατ τ→  is continuous, F   implies that . 

. Conversely, assume that 

xI⎯→⎯τ

)(( xff α
τ

α
α⎯→⎯F) ( ) ( )xff α

τ
α

α⎯→⎯F  for each Jα ∈ . Now, 

 and if , S∈− )(1
αα Of )(1

αα Ofx −∈ F)()( ααα fOxf ∈∈  and thus or some 

. Hence  and thus . Since  is a base 

member for 

ααα OFf ⊆)(  f

F∈αF ααα FOf ⊇− )(1 F∈− )(1
αα Of )(1

1
ii

Of
n

i
αα

−

=
∩

Iτ , it follows that base members containing x belong to F . 

Hence . x⎯→⎯ IF τ

In particular, when  is a product set and αXX Π= αα Pf =   are projection maps , Iτ  is 

called the product topology for X. According to Proposition 5.1 Iτ  is the coarsest 

topology for X such that each projection map is continuous. 
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CONCLUSION 

 

A discussion of filters and their applications to the theory of general topology has been 

presented. These ideas have been primarily developed by European mathematicians, 

beginning with the work of H. Cartan and recorded in the various texts written under the 

pseudoname “ N. Bourbaki.” The Moore- Smith “ net convergence” has been more 

widely taught in American universities. Both are used to characterize topological 

concepts in more abstract spaces. 
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