You are here

THE REMOVAL OF MOTION ARTIFACTS FROM NON-INVASIVE BLOOD PRESSURE MEASUREMENTS

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
Modern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the patient's surroundings to motion for obtaining a reliable reading. But there are situations in which we need Blood Pressure Measurements with the patient or his surroundings in motion; for instance in an ambulance while a patient is being transported to a hospital. In this thesis, we present a technique to reduce the effect of motion artifact from Blood Pressure measurements. We digitize the blood pressure waveform and use Digital Signal Processing Techniques to process the corrupted waveform. We use the differences in frequency spectra of the Blood Pressure signal and motion artifact noise to remove the motion artifact noise. The motion artifact noise spectrum is not very well defined, since it may consist of many different frequency components depending on the kind of motion. The Blood Pressure signal is more or less a periodic signal. That translates to periodicity in the frequency domain. Hence, we designed a digital filter that could take advantage of the periodic nature of the Blood Pressure Signal waveform. The filter is shaped like a comb with periodic peaks around the signal frequency components. Further processing of the filtered signal: baseline restoration and level shifting help us to further reduce the noise corruption.
Title: THE REMOVAL OF MOTION ARTIFACTS FROM NON-INVASIVE BLOOD PRESSURE MEASUREMENTS.
33 views
10 downloads
Name(s): Thakkar, Paresh, Author
Weeks, Arthur, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Modern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the patient's surroundings to motion for obtaining a reliable reading. But there are situations in which we need Blood Pressure Measurements with the patient or his surroundings in motion; for instance in an ambulance while a patient is being transported to a hospital. In this thesis, we present a technique to reduce the effect of motion artifact from Blood Pressure measurements. We digitize the blood pressure waveform and use Digital Signal Processing Techniques to process the corrupted waveform. We use the differences in frequency spectra of the Blood Pressure signal and motion artifact noise to remove the motion artifact noise. The motion artifact noise spectrum is not very well defined, since it may consist of many different frequency components depending on the kind of motion. The Blood Pressure signal is more or less a periodic signal. That translates to periodicity in the frequency domain. Hence, we designed a digital filter that could take advantage of the periodic nature of the Blood Pressure Signal waveform. The filter is shaped like a comb with periodic peaks around the signal frequency components. Further processing of the filtered signal: baseline restoration and level shifting help us to further reduce the noise corruption.
Identifier: CFE0000324 (IID), ucf:46289 (fedora)
Note(s): 2004-12-01
M.S.
Engineering and Computer Science, Department of Electrical and Computer Engineering
Masters
This record was generated from author submitted information.
Subject(s): NIBP
Non Invasive Blood Pressure
Motion Artifacts
Comb Filter
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000324
Restrictions on Access: campus 2014-01-31
Host Institution: UCF

In Collections