You are here

DEVELOPMENT OF TITANIUM NITRIDE/MOLYBDENUM DISULPHIDE COMPOSITE TRIBOLOGICAL COATINGS FOR CRYOCOOLERS

Download pdf | Full Screen View

Date Issued:
2004
Abstract/Description:
Hydrogen is a clean and sustainable form of carrier of energy that can be used in mobile and stationary applications. At present hydrogen is produced mostly from fossil sources. Solar photoelectrochemical processes are being developed for hydrogen production. Storing hydrogen can be done in three main ways: in compressed form, liquid form and by chemical bonding. Near term spaceport operations are one of the prominent applications for usage of large quantities of liquid hydrogen as a cryogenic propellant. Efficient storage and transfer of liquid hydrogen is essential for reducing the launch costs. A Two Stage Reverse Turbo Brayton Cycle (RTBC) CryoCooler is being developed at University of Central Florida. The cryocooler will be used for storage and transport of hydrogen in spaceport and space vehicle application. One part in development of the cryocooler is to reduce the friction and wear between mating parts thus increasing its efficiency. Tribological coatings having extremely high hardness, ultra-low coefficient of friction, and high durability at temperatures lower than 60 K are being developed to reduce friction and wear between the mating parts of the cryocooler thus improving its efficiency. Nitrides of high-melting-point metals (e.g. TiN, ZrN) and diamond-like-carbon (DLC) are potential candidates for cryogenic applications as these coatings have shown good friction behavior and wear resistance at cryogenic temperatures. These coatings are known to have coefficient of friction less than 0.1 at room temperature. However, cryogenic environment leads to increase in the coefficient of friction. It is expected that a composite consisting of a base layer of a hard coating covered with layer having an ultra-low coefficient of friction would provide better performance. Extremely hard and extremely low friction coatings of titanium nitride, molybdenum disulphide, TiN/MoS2 bilayer coatings, DLC and DLC/MoS2 bilayer coatings have been chosen for this application. TiN film was deposited by reactive DC magnetron sputtering system from a titanium target and MoS2 film was deposited by RF magnetron sputtering using a MoS2 target. Microwave assisted chemical vapor deposition (MWCVD) technique was used for preparation of DLC coatings. These composite coatings contain a solid lubricating phase and a hard ceramic matrix phase as distinctly segregated phases. These are envisioned as having the desired combination of lubricity and structural integrity. Extremely hard coatings of TiN and DLC were chosen to provide good wear resistance and MoS2 was chosen as the lubricating phase as it provides excellent solid lubricating properties due to its lamellar crystal structure. This thesis presents preparation; characterization (SEM and XRD), microhardness and tribological measurements carried out on TiN and TiN/MoS2 coatings on aluminum and glass substrate at room temperature. It also presents initial development in preparation of DLC coatings.
Title: DEVELOPMENT OF TITANIUM NITRIDE/MOLYBDENUM DISULPHIDE COMPOSITE TRIBOLOGICAL COATINGS FOR CRYOCOOLERS .
53 views
17 downloads
Name(s): Pai, Anil, Author
Dhere, Neelkanth, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2004
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Hydrogen is a clean and sustainable form of carrier of energy that can be used in mobile and stationary applications. At present hydrogen is produced mostly from fossil sources. Solar photoelectrochemical processes are being developed for hydrogen production. Storing hydrogen can be done in three main ways: in compressed form, liquid form and by chemical bonding. Near term spaceport operations are one of the prominent applications for usage of large quantities of liquid hydrogen as a cryogenic propellant. Efficient storage and transfer of liquid hydrogen is essential for reducing the launch costs. A Two Stage Reverse Turbo Brayton Cycle (RTBC) CryoCooler is being developed at University of Central Florida. The cryocooler will be used for storage and transport of hydrogen in spaceport and space vehicle application. One part in development of the cryocooler is to reduce the friction and wear between mating parts thus increasing its efficiency. Tribological coatings having extremely high hardness, ultra-low coefficient of friction, and high durability at temperatures lower than 60 K are being developed to reduce friction and wear between the mating parts of the cryocooler thus improving its efficiency. Nitrides of high-melting-point metals (e.g. TiN, ZrN) and diamond-like-carbon (DLC) are potential candidates for cryogenic applications as these coatings have shown good friction behavior and wear resistance at cryogenic temperatures. These coatings are known to have coefficient of friction less than 0.1 at room temperature. However, cryogenic environment leads to increase in the coefficient of friction. It is expected that a composite consisting of a base layer of a hard coating covered with layer having an ultra-low coefficient of friction would provide better performance. Extremely hard and extremely low friction coatings of titanium nitride, molybdenum disulphide, TiN/MoS2 bilayer coatings, DLC and DLC/MoS2 bilayer coatings have been chosen for this application. TiN film was deposited by reactive DC magnetron sputtering system from a titanium target and MoS2 film was deposited by RF magnetron sputtering using a MoS2 target. Microwave assisted chemical vapor deposition (MWCVD) technique was used for preparation of DLC coatings. These composite coatings contain a solid lubricating phase and a hard ceramic matrix phase as distinctly segregated phases. These are envisioned as having the desired combination of lubricity and structural integrity. Extremely hard coatings of TiN and DLC were chosen to provide good wear resistance and MoS2 was chosen as the lubricating phase as it provides excellent solid lubricating properties due to its lamellar crystal structure. This thesis presents preparation; characterization (SEM and XRD), microhardness and tribological measurements carried out on TiN and TiN/MoS2 coatings on aluminum and glass substrate at room temperature. It also presents initial development in preparation of DLC coatings.
Identifier: CFE0000326 (IID), ucf:46305 (fedora)
Note(s): 2004-12-01
M.S.
Engineering and Computer Science, Department of Mechanical, Materials, and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): Tribological coatings
Titanium nitride
Molybdenum disulphide
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000326
Restrictions on Access: campus 2005-01-31
Host Institution: UCF

In Collections