You are here

NON-SILICON MICROFABRICATED NANOSTRUCTURED CHEMICAL SENSORS FOR ELECTRIC NOSE APPLICATION

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
A systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing applications. Different doping material such as copper, silver, platinum and indium are studied in order to achieve better selectivity for different targeting toxic gases including hydrogen, carbon monoxide, hydrogen sulfide etc. Fundamental issues like sensitivity, selectivity, stability, temperature influence, humidity influence, thermal characterization, drifting problem etc. of SMO gas sensors have been intensively investigated. A novel approach to improve temperature stability of SMO (including tin oxide) gas sensors by applying a temperature feedback control circuit has been developed. The feedback temperature controller that is compatible with MEMS sensor fabrication has been invented and applied to gas sensor array system. Significant improvement of stability has been achieved compared to SMO gas sensors without temperature compensation under the same ambient conditions. Single walled carbon nanotube (SWNT) has been studied to improve SnO2 gas sensing property in terms of sensitivity, response time and recovery time. Three times of better sensitivity has been achieved experimentally. The feasibility of using TSK Fuzzy neural network algorithm for Electric Nose has been exploited during the research. A training process of using TSK Fuzzy neural network with input/output pairs from individual gas sensor cell has been developed. This will make electric nose smart enough to measure gas concentrations in a gas mixture. The model has been proven valid by gas experimental results conducted.
Title: NON-SILICON MICROFABRICATED NANOSTRUCTURED CHEMICAL SENSORS FOR ELECTRIC NOSE APPLICATION.
39 views
21 downloads
Name(s): Gong, Jianwei, Author
Chen, Quanfang, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: A systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing applications. Different doping material such as copper, silver, platinum and indium are studied in order to achieve better selectivity for different targeting toxic gases including hydrogen, carbon monoxide, hydrogen sulfide etc. Fundamental issues like sensitivity, selectivity, stability, temperature influence, humidity influence, thermal characterization, drifting problem etc. of SMO gas sensors have been intensively investigated. A novel approach to improve temperature stability of SMO (including tin oxide) gas sensors by applying a temperature feedback control circuit has been developed. The feedback temperature controller that is compatible with MEMS sensor fabrication has been invented and applied to gas sensor array system. Significant improvement of stability has been achieved compared to SMO gas sensors without temperature compensation under the same ambient conditions. Single walled carbon nanotube (SWNT) has been studied to improve SnO2 gas sensing property in terms of sensitivity, response time and recovery time. Three times of better sensitivity has been achieved experimentally. The feasibility of using TSK Fuzzy neural network algorithm for Electric Nose has been exploited during the research. A training process of using TSK Fuzzy neural network with input/output pairs from individual gas sensor cell has been developed. This will make electric nose smart enough to measure gas concentrations in a gas mixture. The model has been proven valid by gas experimental results conducted.
Identifier: CFE0000377 (IID), ucf:46328 (fedora)
Note(s): 2005-05-01
Ph.D.
Engineering and Computer Science, Department of Mechanical, Materials, and Aerospace Engineering
Doctorate
This record was generated from author submitted information.
Subject(s): MEMS
SMO
Temperature Feedback Control
Gas Sensor
Fuzzy Neural Network
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000377
Restrictions on Access: public
Host Institution: UCF

In Collections