You are here

ENHANCING MESSAGE PRIVACY IN WIRED EQUIVALENT PRIVACY.

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
The 802.11 standard defines the Wired Equivalent Privacy (WEP) and encapsulation of data frames. It is intended to provide data privacy to the level of a wired network. WEP suffered threat of attacks from hackers owing to certain security shortcomings in the WEP protocol. Lately, many new protocols like WiFi Protected Access (WPA), WPA2, Robust Secure Network (RSN) and 802.11i have come into being, yet their implementation is fairly limited. Despite its shortcomings one cannot undermine the importance of WEP as it still remains the most widely used system and we chose to address certain security issues and propose some modifications to make it more secure. In this thesis we have proposed a modification to the existing WEP protocol to make it more secure. We achieve Message Privacy by ensuring that the encryption is not breached. The idea is to update the shared secret key frequently based on factors like network traffic and number of transmitted frames. We also develop an Initialization Vector (IV) avoidance algorithm that eliminates IV collision problem. The idea is to partition the IV bits among different wireless hosts in a predetermined manner unique to every node. We can use all possible 224 different IVs without making them predictable for an attacker. Our proposed algorithm eliminates the IV collision ensuring Message Privacy that further strengthens security of the existing WEP. We show that frequent rekeying thwarts all kinds of cryptanalytic attacks on the WEP.
Title: ENHANCING MESSAGE PRIVACY IN WIRED EQUIVALENT PRIVACY.
43 views
20 downloads
Name(s): Purandare, Darshan, Author
Guha, Ratan, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The 802.11 standard defines the Wired Equivalent Privacy (WEP) and encapsulation of data frames. It is intended to provide data privacy to the level of a wired network. WEP suffered threat of attacks from hackers owing to certain security shortcomings in the WEP protocol. Lately, many new protocols like WiFi Protected Access (WPA), WPA2, Robust Secure Network (RSN) and 802.11i have come into being, yet their implementation is fairly limited. Despite its shortcomings one cannot undermine the importance of WEP as it still remains the most widely used system and we chose to address certain security issues and propose some modifications to make it more secure. In this thesis we have proposed a modification to the existing WEP protocol to make it more secure. We achieve Message Privacy by ensuring that the encryption is not breached. The idea is to update the shared secret key frequently based on factors like network traffic and number of transmitted frames. We also develop an Initialization Vector (IV) avoidance algorithm that eliminates IV collision problem. The idea is to partition the IV bits among different wireless hosts in a predetermined manner unique to every node. We can use all possible 224 different IVs without making them predictable for an attacker. Our proposed algorithm eliminates the IV collision ensuring Message Privacy that further strengthens security of the existing WEP. We show that frequent rekeying thwarts all kinds of cryptanalytic attacks on the WEP.
Identifier: CFE0000479 (IID), ucf:46371 (fedora)
Note(s): 2005-05-01
M.S.
Engineering and Computer Science, School of Computer Science
Masters
This record was generated from author submitted information.
Subject(s): WEP
IEEE 802.11
IV
WPA
RSN
Wireless Security
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000479
Restrictions on Access: public
Host Institution: UCF

In Collections