You are here
ARC-DISCHARGE IN SOLUTION: A NOVEL SYNTHESIS METHOD FOR CARBON NANOTUBES AND IN SITU DECORATION OF CARBON NANOTUBES WITH NANOPARTICLES
- Date Issued:
- 2005
- Abstract/Description:
- Nanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological devices with enhanced properties. Recently, the 'bottom-up' approach for the fabrication of nanomaterials has received a great deal of attention for its simplicity and cost effectiveness. Tailoring the various parameters during synthesis of selected nanoparticles can be used to fabricate technologically important components. During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. Although carbon nanotubes can be synthesized using a variety of techniques, large-scale synthesis is still a great challenge to the researchers. Three methods are commonly used for commercial and bulk productions of carbon nanotubes: arc-discharge, chemical vapor deposition and laser ablation. However, low-cost, large-scale production of high-quality carbon nanotubes is yet to be reported. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrumen is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3-4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 ± 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except the presence of some amorphous carbon. Thermogravimetric analysis and chemical oxidation data of CNTs show the good agreement with electron microscopy analysis. The surface area analysis depicts very high surface area. For pristine multi-walled carbon nanotubes, the BET surface area is approximately 80 m2.g-1. X-ray diffraction studies on carbon nanotubes shows that the products are clean. Nano-sized palladium decorated carbon nanotubes are supposed to be very efficient for hydrogen storage. The synthesis for in-situ decoration of palladium nanoparticles on carbon nanotubes using the arc discharge in solution process has been extensively carried out for possible hydrogen storage applications and electronic device fabrication. Palladium nanoparticles were found to form during the reduction of palladium tetra-chloro-square planar complex. The formation of such a complex was investigated using ultraviolet-visible spectroscopic method. Pd-nanoparticles were simultaneously decorated on carbon nanotubes during the rolling of graphene sheets in the arc-discharge process. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. The deconvoluted X-ray photoelectron spectroscopy envelope shows the presence of palladium. Surface area measurements using BET method show a surface area of 28 m2.g-1. The discrepancy with pristine CNTs can be explained considering the density of palladium (12023 kg.m-3). Energy dispersive spectroscopy suggests no functionalization of chlorine to the sidewall of carbon nanotubes. The presence of dislodged graphene sheets with wavy morphology as observed with high-resolution transmission electron microscopy supports the formation of CNTs through the 'scroll mechanism'.
Title: | ARC-DISCHARGE IN SOLUTION: A NOVEL SYNTHESIS METHOD FOR CARBON NANOTUBES AND IN SITU DECORATION OF CARBON NANOTUBES WITH NANOPARTICLES. |
27 views
14 downloads |
---|---|---|
Name(s): |
Bera, Debasis, Author Seal, Sudipta, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2005 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Nanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological devices with enhanced properties. Recently, the 'bottom-up' approach for the fabrication of nanomaterials has received a great deal of attention for its simplicity and cost effectiveness. Tailoring the various parameters during synthesis of selected nanoparticles can be used to fabricate technologically important components. During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. Although carbon nanotubes can be synthesized using a variety of techniques, large-scale synthesis is still a great challenge to the researchers. Three methods are commonly used for commercial and bulk productions of carbon nanotubes: arc-discharge, chemical vapor deposition and laser ablation. However, low-cost, large-scale production of high-quality carbon nanotubes is yet to be reported. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrumen is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3-4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 ± 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except the presence of some amorphous carbon. Thermogravimetric analysis and chemical oxidation data of CNTs show the good agreement with electron microscopy analysis. The surface area analysis depicts very high surface area. For pristine multi-walled carbon nanotubes, the BET surface area is approximately 80 m2.g-1. X-ray diffraction studies on carbon nanotubes shows that the products are clean. Nano-sized palladium decorated carbon nanotubes are supposed to be very efficient for hydrogen storage. The synthesis for in-situ decoration of palladium nanoparticles on carbon nanotubes using the arc discharge in solution process has been extensively carried out for possible hydrogen storage applications and electronic device fabrication. Palladium nanoparticles were found to form during the reduction of palladium tetra-chloro-square planar complex. The formation of such a complex was investigated using ultraviolet-visible spectroscopic method. Pd-nanoparticles were simultaneously decorated on carbon nanotubes during the rolling of graphene sheets in the arc-discharge process. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. The deconvoluted X-ray photoelectron spectroscopy envelope shows the presence of palladium. Surface area measurements using BET method show a surface area of 28 m2.g-1. The discrepancy with pristine CNTs can be explained considering the density of palladium (12023 kg.m-3). Energy dispersive spectroscopy suggests no functionalization of chlorine to the sidewall of carbon nanotubes. The presence of dislodged graphene sheets with wavy morphology as observed with high-resolution transmission electron microscopy supports the formation of CNTs through the 'scroll mechanism'. | |
Identifier: | CFE0000450 (IID), ucf:46388 (fedora) | |
Note(s): |
2005-05-01 Ph.D. Engineering and Computer Science, Department of Mechanical, Materials, and Aerospace Engineering Doctorate This record was generated from author submitted information. |
|
Subject(s): |
Carbon nanotubes CNTs Nanoparticles Nanotechnology Nanomaterials synthesis Bottom-up approach |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0000450 | |
Restrictions on Access: | public | |
Host Institution: | UCF |