You are here

CREATING GEO-SPECIFIC ROAD DATABASES FROM AERIAL PHOTOS FOR DRIVING SIMULATION

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
Geo-specific road database development is important to a driving simulation system and a very labor intensive process. Road databases for driving simulation need high resolution and accuracy. Even though commercial software is available on the market, a lot of manual work still has to be done when the road crosssectional profile is not uniform. This research deals with geo-specific road databases development, especially for roads with non-uniform cross sections. In this research, the United States Geographical Survey (USGS) road information is used with aerial photos to accurately extract road boundaries, using image segmentation and data compression techniques. Image segmentation plays an important role in extracting road boundary information. There are numerous methods developed for image segmentation. Six methods have been tried for the purpose of road image segmentation. The major problems with road segmentation are due to the large variety of road appearances and the many linear features in roads. A method that does not require a database of sample images is desired. Furthermore, this method should be able to handle the complexity of road appearances. The proposed method for road segmentation is based on the mean-shift clustering algorithm and it yields a high accuracy. In the phase of building road databases and visual databases based on road segmentation results, the Linde-Buzo-Gray (LBG) vector quantization algorithm is used to identify repeatable cross section profiles. In the phase of texture mapping, five major uniform textures are considered - pavement, white marker, yellow marker, concrete and grass. They are automatically mapped to polygons. In the chapter of results, snapshots of road/visual database are presented.
Title: CREATING GEO-SPECIFIC ROAD DATABASES FROM AERIAL PHOTOS FOR DRIVING SIMULATION.
28 views
13 downloads
Name(s): Guo, Dahai, Author
Klee, Harold, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Geo-specific road database development is important to a driving simulation system and a very labor intensive process. Road databases for driving simulation need high resolution and accuracy. Even though commercial software is available on the market, a lot of manual work still has to be done when the road crosssectional profile is not uniform. This research deals with geo-specific road databases development, especially for roads with non-uniform cross sections. In this research, the United States Geographical Survey (USGS) road information is used with aerial photos to accurately extract road boundaries, using image segmentation and data compression techniques. Image segmentation plays an important role in extracting road boundary information. There are numerous methods developed for image segmentation. Six methods have been tried for the purpose of road image segmentation. The major problems with road segmentation are due to the large variety of road appearances and the many linear features in roads. A method that does not require a database of sample images is desired. Furthermore, this method should be able to handle the complexity of road appearances. The proposed method for road segmentation is based on the mean-shift clustering algorithm and it yields a high accuracy. In the phase of building road databases and visual databases based on road segmentation results, the Linde-Buzo-Gray (LBG) vector quantization algorithm is used to identify repeatable cross section profiles. In the phase of texture mapping, five major uniform textures are considered - pavement, white marker, yellow marker, concrete and grass. They are automatically mapped to polygons. In the chapter of results, snapshots of road/visual database are presented.
Identifier: CFE0000591 (IID), ucf:46472 (fedora)
Note(s): 2005-08-01
Ph.D.
Engineering and Computer Science, Department of Electrical and Computer Engineering
Doctorate
This record was generated from author submitted information.
Subject(s): Driving Simulation
Image Segmentation
Road Modeling
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000591
Restrictions on Access: public
Host Institution: UCF

In Collections