You are here
SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF NEW REACTIVE TWO-PHOTON ABSORBING DYES FOR TWO-PHOTON EXCITED FLUORESCENCE IMAGING APPLICATIONS
- Date Issued:
- 2005
- Abstract/Description:
- Recent, cooperative advances in chemistry, computing, optics, and microelectronics have resulted in extraordinary developments in the biological sciences, resulting in the emergence of a novel area termed ¡¥biophotonics¡¦. The interdisciplinary nature of biophotonics cuts across virtually all disciplines, extending the frontiers of basic cellular, molecular, and biology research. This holds true for the development and application of the novel imaging modality utilizing multiphoton absorption and its extraordinary contribution to advances in bioimaging. Intimately involved in the revolution of nonlinear bioimaging has been the development of optical probes for probing biological function and activity. The focus of this dissertation is in the area of probe development, particularly à-conjugated organic probes, optimized for efficient two-photon absorption followed by upconverted fluorescence for multiphoton bioimaging. Specifically, fluorene molecules, with enhanced two-photon absorbing (2PA) properties and high photostability, were prepared and characterized. Contemporary synthetic methods were utilized to prepare target fluorene derivatives expected to be highly fluorescent and, in particular, exhibit high two-photon absorptivity, suitable for two-photon excitation (2PE) fluorescence microscopy. The flexibility afforded through synthetic manipulation for integrating hydrophilic moieties into the fluorophore architecture to enhance compatibility with aqueous systems, more native to biological samples, was attempted. Incorporation of functional groups for direct covalent attachment onto biomolecules was also pursued to prepare fluorene derivatives as efficient 2PA reactive probes. Linear and two-photon spectroscopic characterizations on these novel compounds reveal they exhibit relatively high 2PA cross-sections on the order of ~100 GM units, which is greater than typical, commonly used fluorophores utilized in multiphoton bioimaging. Extensive photostability studies of representative fluorene compounds demonstrate these derivatives are photostable under one- and two-photon excitation conditions, exhibiting photodecomposition quantum yields on the order of 10-5. Additionally, preliminary cytotoxicity studies indicate these fluorene derivatives exhibit minimal cytotoxic effects on proliferating cells. Finally, their utility as high-performance, 2PA fluorescent probes in 2PE fluorescence microscopy imaging of biological samples was demonstrated in both fixed and live cells. Due to the low cytotoxicity, high photostability, efficient 2PA, and high fluorescence quantum yield, the probes were found suitable for relatively long-term, two-photon fluorescence imaging of live cells, representing a significant advance in biophotonics.
Title: | SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF NEW REACTIVE TWO-PHOTON ABSORBING DYES FOR TWO-PHOTON EXCITED FLUORESCENCE IMAGING APPLICATIONS. |
47 views
29 downloads |
---|---|---|
Name(s): |
Hales, Katherine, Author Belfield, Kevin, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2005 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Recent, cooperative advances in chemistry, computing, optics, and microelectronics have resulted in extraordinary developments in the biological sciences, resulting in the emergence of a novel area termed ¡¥biophotonics¡¦. The interdisciplinary nature of biophotonics cuts across virtually all disciplines, extending the frontiers of basic cellular, molecular, and biology research. This holds true for the development and application of the novel imaging modality utilizing multiphoton absorption and its extraordinary contribution to advances in bioimaging. Intimately involved in the revolution of nonlinear bioimaging has been the development of optical probes for probing biological function and activity. The focus of this dissertation is in the area of probe development, particularly à-conjugated organic probes, optimized for efficient two-photon absorption followed by upconverted fluorescence for multiphoton bioimaging. Specifically, fluorene molecules, with enhanced two-photon absorbing (2PA) properties and high photostability, were prepared and characterized. Contemporary synthetic methods were utilized to prepare target fluorene derivatives expected to be highly fluorescent and, in particular, exhibit high two-photon absorptivity, suitable for two-photon excitation (2PE) fluorescence microscopy. The flexibility afforded through synthetic manipulation for integrating hydrophilic moieties into the fluorophore architecture to enhance compatibility with aqueous systems, more native to biological samples, was attempted. Incorporation of functional groups for direct covalent attachment onto biomolecules was also pursued to prepare fluorene derivatives as efficient 2PA reactive probes. Linear and two-photon spectroscopic characterizations on these novel compounds reveal they exhibit relatively high 2PA cross-sections on the order of ~100 GM units, which is greater than typical, commonly used fluorophores utilized in multiphoton bioimaging. Extensive photostability studies of representative fluorene compounds demonstrate these derivatives are photostable under one- and two-photon excitation conditions, exhibiting photodecomposition quantum yields on the order of 10-5. Additionally, preliminary cytotoxicity studies indicate these fluorene derivatives exhibit minimal cytotoxic effects on proliferating cells. Finally, their utility as high-performance, 2PA fluorescent probes in 2PE fluorescence microscopy imaging of biological samples was demonstrated in both fixed and live cells. Due to the low cytotoxicity, high photostability, efficient 2PA, and high fluorescence quantum yield, the probes were found suitable for relatively long-term, two-photon fluorescence imaging of live cells, representing a significant advance in biophotonics. | |
Identifier: | CFE0000685 (IID), ucf:46487 (fedora) | |
Note(s): |
2005-08-01 Ph.D. Arts and Sciences, Department of Chemistry Doctorate This record was generated from author submitted information. |
|
Subject(s): |
Two-photon nonlinear bioimaging fluorescence microscopy photostability synthesis biophotonics |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0000685 | |
Restrictions on Access: | public | |
Host Institution: | UCF |