You are here

INVESTIGATION OF HIGH-K GATE DIELECTRICS AND METALS FOR MOSFET DEVICES.

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
Progress in advanced microlithography and deposition techniques have made feasible high- k dielectric materials for MOS transistors. The continued scaling of CMOS devices is pushing the Si-SiO2 to its limit to consider high-k gate dielectrics. The demand for faster, low power, smaller, less expensive devices with good functionality and higher performance increases the demand for high-k dielectric based MOS devices. This thesis gives an in-depth study of threshold voltages of PMOS and NMOS transistors using various high-k dielectric materials like Tantalum pent oxide (Ta2O5), Hafnium oxide (HfO2), Zirconium oxide (ZrO2) and Aluminum oxide (Al2O3) gate oxides. Higher dielectric constant may lead to high oxide capacitance (Cox), which affects the threshold voltage (VT) of the device. The working potential of MOS devices can be increased by high dielectric gate oxide and work function of gate metal which may also influence the threshold voltage (VT). High dielectric materials have low gate leakage current, high breakdown voltage and are thermally stable on Silicon Substrate (Si). Different kinds of deposition techniques for different gate oxides, gate metals and stability over silicon substrates are analyzed theoretically. The impact of the properties of gate oxides such as oxide thickness, interface trap charges, doping concentration on threshold voltage were simulated, plotted and studied. This study involved comparisons of oxides-oxides, metals-metals, and metals-oxides. Gate metals and alloys with work function of less than 5eV would be suitable candidates for aluminum oxide, hafnium oxide etc. based MOSFETs.
Title: INVESTIGATION OF HIGH-K GATE DIELECTRICS AND METALS FOR MOSFET DEVICES. .
9 views
3 downloads
Name(s): Seshadri, Sriram, Author
Sundaram, Kalpathy , Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Progress in advanced microlithography and deposition techniques have made feasible high- k dielectric materials for MOS transistors. The continued scaling of CMOS devices is pushing the Si-SiO2 to its limit to consider high-k gate dielectrics. The demand for faster, low power, smaller, less expensive devices with good functionality and higher performance increases the demand for high-k dielectric based MOS devices. This thesis gives an in-depth study of threshold voltages of PMOS and NMOS transistors using various high-k dielectric materials like Tantalum pent oxide (Ta2O5), Hafnium oxide (HfO2), Zirconium oxide (ZrO2) and Aluminum oxide (Al2O3) gate oxides. Higher dielectric constant may lead to high oxide capacitance (Cox), which affects the threshold voltage (VT) of the device. The working potential of MOS devices can be increased by high dielectric gate oxide and work function of gate metal which may also influence the threshold voltage (VT). High dielectric materials have low gate leakage current, high breakdown voltage and are thermally stable on Silicon Substrate (Si). Different kinds of deposition techniques for different gate oxides, gate metals and stability over silicon substrates are analyzed theoretically. The impact of the properties of gate oxides such as oxide thickness, interface trap charges, doping concentration on threshold voltage were simulated, plotted and studied. This study involved comparisons of oxides-oxides, metals-metals, and metals-oxides. Gate metals and alloys with work function of less than 5eV would be suitable candidates for aluminum oxide, hafnium oxide etc. based MOSFETs.
Identifier: CFE0000667 (IID), ucf:46549 (fedora)
Note(s): 2005-08-01
M.S.E.E.
Engineering and Computer Science, Department of Electrical and Computer Engineering
Masters
This record was generated from author submitted information.
Subject(s): MOSFET Devices
Gate dielectrics
Threshold Voltage
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000667
Restrictions on Access: campus 2010-01-31
Host Institution: UCF

In Collections