You are here

PHASE SYNCHRONIZATION IN THREE-DIMENSIONAL LATTICES AND GLOBALLY COUPLED POPULATIONS OF NONIDENTICAL ROSSLER OSCILLATORS

Download pdf | Full Screen View

Date Issued:
2005
Abstract/Description:
A study on phase synchronization in large populations of nonlinear dynamical systems is presented in this thesis. Using the well-known Rossler system as a prototypical model, phase synchronization in one oscillator with periodic external forcing and in two-coupled nonidentical oscillators was explored at first. The study was further extended to consider three-dimensional lattices and globally coupled populations of nonidentical oscillators, in which the mathematical formulation that represents phase synchronization in the generalized N-coupled Rossler system was derived and several computer programs that perform numerical simulations were developed. The results show the effects of coupling dimension, coupling strength, population size, and system parameter on phase synchronization of the various Rossler systems, which may be applicable to studying phase synchronization in other nonlinear dynamical systems as well.
Title: PHASE SYNCHRONIZATION IN THREE-DIMENSIONAL LATTICES AND GLOBALLY COUPLED POPULATIONS OF NONIDENTICAL ROSSLER OSCILLATORS.
6 views
1 downloads
Name(s): Qi, Limin, Author
Schober, Constance, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2005
Publisher: University of Central Florida
Language(s): English
Abstract/Description: A study on phase synchronization in large populations of nonlinear dynamical systems is presented in this thesis. Using the well-known Rossler system as a prototypical model, phase synchronization in one oscillator with periodic external forcing and in two-coupled nonidentical oscillators was explored at first. The study was further extended to consider three-dimensional lattices and globally coupled populations of nonidentical oscillators, in which the mathematical formulation that represents phase synchronization in the generalized N-coupled Rossler system was derived and several computer programs that perform numerical simulations were developed. The results show the effects of coupling dimension, coupling strength, population size, and system parameter on phase synchronization of the various Rossler systems, which may be applicable to studying phase synchronization in other nonlinear dynamical systems as well.
Identifier: CFE0000776 (IID), ucf:46559 (fedora)
Note(s): 2005-12-01
M.S.
Arts and Sciences, Department of Mathematics
Masters
This record was generated from author submitted information.
Subject(s): phase synchronization
Rossler system
chaotic oscillator
periodic oscillator
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000776
Restrictions on Access: public
Host Institution: UCF

In Collections