You are here

TRULY NON INVASIVE GLUCOSE OPTICAL SENSOR BASED ON METAL NANOPARTICLES GENERATION

Download pdf | Full Screen View

Date Issued:
2006
Abstract/Description:
Diabetes is a disease that causes many complications in human normal function. This disease represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications can be accomplished through tight control of glucose levels in blood. In the last decades many different glucose sensors have been developed, however, none of them are really non invasive. Herein, we present the study of the application of gold and silver nanoparticles with different shapes and aspect ratios to detect glucose traces in human fluids such as tears and sweat. This is to our knowledge the first truly non invasive glucose optical sensor, with extraordinary limit of detection and selectivity. The best proven nanoparticles for this application were gold nanospheres. Gold nanospheres were synthesized using chloroauric acid tri-hydrated (HAuCl4.3H2O) in solution, in the presence of glucose and ammonia hydroxide. The higher the glucose concentration, the higher the number of nanoparticles generated, thus the higher the extinction efficiency of the solution. The linear dependence of the extinction efficiency of the gold nanoparticles solution with glucose concentration makes of this new sensor suitable for direct applications in biomedical sensing. Our approach is based on the well known Tollens test.
Title: TRULY NON INVASIVE GLUCOSE OPTICAL SENSOR BASED ON METAL NANOPARTICLES GENERATION.
44 views
18 downloads
Name(s): Garcia, Marisol, Author
Hernandez, Florencio, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2006
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Diabetes is a disease that causes many complications in human normal function. This disease represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications can be accomplished through tight control of glucose levels in blood. In the last decades many different glucose sensors have been developed, however, none of them are really non invasive. Herein, we present the study of the application of gold and silver nanoparticles with different shapes and aspect ratios to detect glucose traces in human fluids such as tears and sweat. This is to our knowledge the first truly non invasive glucose optical sensor, with extraordinary limit of detection and selectivity. The best proven nanoparticles for this application were gold nanospheres. Gold nanospheres were synthesized using chloroauric acid tri-hydrated (HAuCl4.3H2O) in solution, in the presence of glucose and ammonia hydroxide. The higher the glucose concentration, the higher the number of nanoparticles generated, thus the higher the extinction efficiency of the solution. The linear dependence of the extinction efficiency of the gold nanoparticles solution with glucose concentration makes of this new sensor suitable for direct applications in biomedical sensing. Our approach is based on the well known Tollens test.
Identifier: CFE0000953 (IID), ucf:46736 (fedora)
Note(s): 2006-05-01
M.S.
Arts and Sciences, Department of Chemistry
Masters
This record was generated from author submitted information.
Subject(s): Glucose sensor
gold nanospheres
gold nanorods
silver nanorods
silver nanosphres
silver nanoprisms
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0000953
Restrictions on Access: campus 2016-01-31
Host Institution: UCF

In Collections