You are here
ALL-SEMICONDUCTOR HIGH POWER MODE-LOCKED LASER SYSTEM
- Date Issued:
- 2006
- Abstract/Description:
- The objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the concept of X-CPA are addressed. Based on theoretical and experimental study, an all-semiconductor mode-locked X-CPA system consisting of a mode-locked master oscillator, an optical pulse pre-stretcher, a semiconductor optical amplifier (SOA) pulse picker, an extreme pulse stretcher/compressor, cascaded optical amplifiers, and a bulk grating compressor is successfully demonstrated and generates >kW record peak power. A potential candidate for generating high average power from an X-CPA system, novel grating coupled surface emitting semiconductor laser (GCSEL) devices, are studied experimentally. The first demonstration of mode-locking with GCSELs and associated amplification characteristics of grating coupled surface emitting SOAs will be presented. In an effort to go beyond the record setting results of the X-CPA system, a passive optical cavity amplification technique in conjunction with the X-CPA system is constructed, and studied experimentally and theoretically.
Title: | ALL-SEMICONDUCTOR HIGH POWER MODE-LOCKED LASER SYSTEM. |
29 views
14 downloads |
---|---|---|
Name(s): |
Kim, Kyungbum, Author Delfyett, Peter, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2006 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | The objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the concept of X-CPA are addressed. Based on theoretical and experimental study, an all-semiconductor mode-locked X-CPA system consisting of a mode-locked master oscillator, an optical pulse pre-stretcher, a semiconductor optical amplifier (SOA) pulse picker, an extreme pulse stretcher/compressor, cascaded optical amplifiers, and a bulk grating compressor is successfully demonstrated and generates >kW record peak power. A potential candidate for generating high average power from an X-CPA system, novel grating coupled surface emitting semiconductor laser (GCSEL) devices, are studied experimentally. The first demonstration of mode-locking with GCSELs and associated amplification characteristics of grating coupled surface emitting SOAs will be presented. In an effort to go beyond the record setting results of the X-CPA system, a passive optical cavity amplification technique in conjunction with the X-CPA system is constructed, and studied experimentally and theoretically. | |
Identifier: | CFE0001069 (IID), ucf:46767 (fedora) | |
Note(s): |
2006-05-01 Ph.D. Optics and Photonics, Doctorate This record was generated from author submitted information. |
|
Subject(s): |
mode-locked laser semiconductor laser optical pulse compression chirped fiber Bragg grating ultrafast laser semiconductor optical amplifier chirped pulse amplification |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0001069 | |
Restrictions on Access: | public | |
Host Institution: | UCF |