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Abstract

Since the discovery in the early 1950’s, frames have emerged as an important

tool in signal processing, image processing, data compression and sampling theory

etc. Today, powerful tools from operator theory and Banach space theory are

being introduced to the study of frames producing deep results in frame theory.

In recent years, many mathematicians generalized the frame theory from

Hilbert spaces to Hilbert C∗-modules and got significant results which enrich

the theory of frames. Also there is growing evidence that Hilbert C∗-modules

theory and the theory of wavelets and frames are tightly related to each other in

many aspects. Both research fields can benefit from achievements of the other

field. Our purpose of this dissertation is to work on several basic problems on

frames for Hilbert C∗-modules.

We first give a very useful characterization of modular frames which is easy

to be applied. Using this characterization we investigate the modular frames

from the operator theory point of view. A condition under which the removal of

element from a frame in Hilbert C∗-modules leaves a frame or a non-frame set

is also given. In contrast to the Hilbert space situation, Riesz bases of Hilbert

C∗-modules may possess infinitely many alternative duals due to the existence of

zero-divisors and not every dual of a Riesz basis is again a Riesz basis. We will

present several such examples showing that the duals of Riesz bases in Hilbert

C∗-modules are much different and more complicated than the Hilbert space

cases. A complete characterization of all the dual sequences for a Riesz basis,

and a necessary and sufficient condition for a dual sequence of a Riesz basis to

be a Riesz basis are also given. In the case that the underlying C∗-algebra is a

commutative W ∗-algebra, we prove that the set of the Parseval frame generators

for a unitary group can be parameterized by the set of all the unitary operators in
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the double commutant of the unitary group. Similar result holds for the set of all

the general frame generators where the unitary operators are replaced by invert-

ible and adjointable operators. Consequently, the set of all the Parseval frame

generators is path-connected. We also prove the existence and uniqueness of the

best Parseval multi-frame approximations for multi-frame generators of unitary

groups on Hilbert C∗-modules when the underlying C∗-algebra is commutative.

For the dilation results of frames we show that a complete Parseval frame vector

for a unitary group on Hilbert C∗-module can be dilated to a complete wander-

ing vector. For any dual frame pair in Hilbert C∗-modules, we prove that the

pair are orthogonal compressions of a Riesz basis and its canonical dual basis for

some larger Hilbert C∗-module. For the perturbation of frames and Riesz bases

in Hilbert C∗-modules we prove that the Casazza-Christensen general perturba-

tion theorem for frames in Hilbert spaces remains valid in Hilbert C∗-modules.

In the Hilbert space setting, under the same perturbation condition, the pertur-

bation of any Riesz basis remains a Riesz basis. However, this no longer holds

for Riesz bases in Hilbert C∗-modules. We also give a complete characterization

on all the Riesz bases for Hilbert C∗-modules such that the perturbation (un-

der Casazza-Christensen’s perturbation condition) of a Riesz basis still remains

a Riesz basis.
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CHAPTER 1

INTRODUCTION

In the study of vector spaces one of the most important concepts is that of a

basis, allowing each element in the space to be written as a linear combination of

the elements in the basis. However, the conditions to a basis are very restrictive:

linear independence between the elements. This makes it hard or even impossible

to find bases satisfying extra conditions, and this is the reason that one might

look for a more flexible substitute.

Frames are such tools. A frame for a vector space equipped with an inner

product also allows each element in the space to be written as a linear combination

of the elements in the frame, but linear independence between the frame elements

is not required.

Frames for Hilbert space were formally defined by Duffin and Schaeffer ([22])

in 1952. They used frames as a tool in the study of nonharmonic Fourier series,

i.e., sequence of the type {eiλnx}n∈Z, where {λn}n∈Z is a family of real or complex

numbers. Apparently, the idea of Duffin and Schaeffer did not seem to generate

much interest outside of nonharmonic Fourier series, and the importance of the

concept was not realized by the mathematical community; at least it took 30

years before the next treatment appeared in print. In 1980 Young wrote his book

[56], which contains the basic facts about frames. Frames were presented in the

abstract setting, and again used in the context of nonharmonic Fourier series.

Then, in 1985, as the wavelet era began, Daubechies, Grossmann and Mayer

([20]) observed that frames can be used to find series expansions of functions in

L2(R) which are very similar to the expansions using orthonormal bases. This
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was probably the time when many mathematicians started to see the potential

of the topic. Since then, the theory of frames has been more widely studied.

Frames have been used in signal processing, image processing, data compres-

sion and sampling theory. Today, ever more use are being found for the theory

such as optics, signal detection, as well as the study of Besov spaces in Banach

space theory etc. In the other direction, powerful tools from operator theory and

Banach space theory are being introduced to the study of frames producing deep

results in frame theory. At this very moment, the theory is beginning to grow

rapidly with the host of new people entering the area.

One of the nice things about frame theory is the fact that big portions are

still underdeveloped. Also, many of the extensively developed areas, such as

Weyl-Heisenberg frames and exponential frames, still have many fundamental

open questions to challenge anyone, such as the complete classification of Weyl-

Heisenberg frames or the classification of exponential frame. Another interesting

feature of the area is the broad spectrum of people working in different parts of

it including biologists, engineers, mathematicians, etc. Although each group has

it own interests, there is an opportunity here to interact with a broad spectrum

of researchers.

Recent research also shows that frame theory has strong connections with

some famous results in other aspects of mathematics, for example, the Kadison-

Singer Conjecture in C∗-algebra and Naimark Dilation Theorem in operator-

valued measure theory. In frame theory the Feichtinger Conjecture states that

every bounded frame can be written as a finite union of Riesz basic sequences.

Much work has been done on this conjecture in just the last few years. This

is because the conjecture is not just interesting and important for frame theory

but also is connected to the famous Kadison-Singer Conjecture [41], which is

known to be equivalent to the paving conjecture. Recall that the Kadison-Singer

Conjecture, which is still open, states that whether every pure state on D, the

C∗-algebra of the diagonal operators on l2, admits a unique extension to a (pure)

state on B(l2), the C∗-algebra of all bounded linear operators on l2. In [12], it was
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shown that the Kadison-Singer Conjecture implies the Feichtinger Conjecture. It

is unknown whether these two problems are equivalent, but the result in [12]

indicates that they are certainly very close. In particular, it is proved in [12] that

the Feichtinger Conjecture is equivalent to the conjectured generalization of the

Bourgain-Tzafriri Restricted-Invertibility Theorem.

In recent years, many mathematicians generalized the frame theory in Hilbert

spaces to frame theory in Hilbert C∗-modules and got significant results which

enrich the theory of frames. Also there is growing evidence that Hilbert C∗-

modules theory and the theory of wavelets and frames are tightly related to each

other in many aspects. Both research fields can benefit from achievements of the

other field.

Beside Kasparov’s Stabilization Theorem the inner structure of self-dual Hilbert

W ∗-modules as described by Paschke in [49] has been another source of inspira-

tion for frames of Hilbert C∗-modules. Rephrasing his description in the context

of frames it reads as the proof of the general existence of orthogonal normal-

ized tight frames {xj}j∈J for self-dual Hilbert W ∗-modules, where additionally

the values {〈xj, xj〉 : j ∈ J} are projections. This point of view was already

realized by Denizeau and Havet ([21]) in 1994. They went one step further by

taking a topologically weak reconstruction formula for normalized tight frames

as a cornerstone to characterize the concept of ”quasi-bases” for Hilbert W ∗-

modules. These ”quasi-bases” are a special example of module frames in Hilbert

C∗-modules. The special frames appearing from Paschke’s result are called ”or-

thogonal bases” by these authors. The two concepts were investigated by them

to the extent of tenser product properties of quasi-bases for C∗-correspondences

of W ∗-algebras (cf. [21]).

Frank and Larson ([23]) defined the standard frames in Hilbert C∗-modules

in 1998 and got a series of result for standard frames in finitely or countably

generated Hilbert C∗-modules over unital C∗-algebras. Note that the frames

exist in abundance in finitely or countably generated Hilbert C∗-modules over

unital C∗-algebra A as well as in the C∗-algebras itself (see [26]). This fact allows
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us to rely on standard decompositions for elements of Hilbert C∗-modules despite

the general absence of orthogonal and orthonormal Riesz bases in them.

Meanwhile, the case of Hilbert C∗-modules over non-unital C∗-algebras has

been investigated by Raeburn and Thompson ([50]), as well as by Bakić and

Guljaš ([4]) discovering standard frames even for this class of countably generated

Hilbert C∗-modules in a well-defined larger multiplier module.

However, many problems about frames in Hilbert C∗-modules still have to

be solved. For example, the well-known open problem: Does every Hilbert C∗-

module admit a modular frame? These problems are attracting more and more

people to enter this field.

The areas of applications indicate a large potential of problems for the inves-

tigation of which the results of frames in Hilbert C∗-modules could be applied.

From the point of view of applied frame theory, the advantage of the generalized

setting of Hilbert C∗-modules may consist in the additional degree of freedom

coming from the C∗-algebra A of coefficients and its special inner structure, to-

gether with the handling of the basic features of the generalized theory in almost

the same manner as for Hilbert spaces.

The aim of this manuscript is to continue the study of frames in Hilbert

C∗-modules. The considerations follow the line of the geometrical and operator-

theoretical approach worked by Han and Larson ([37]) in the main. However,

proofs that generalize from the Hilbert space cases, when attainable, are usually

considerably more difficult for the module case for reasons that do not occur in

the simpler Hilbert space cases.

Let’s describe the chapters in more details. Chapter 2 contains the basic

results of frames in Hilbert spaces and the basic properties of Hilbert C∗-modules.

In Chapter 3 we introduce the concept of frames in Hilbert C∗-modules. The

basic properties of modular frames are given in Section 3.1. Note that from the

definition of modular frames, it is clear that we need to compare positive elements

in the underlying C∗-algebra in order to test whether a sequence is a frame or

not. This usually is not a trivial task. An equivalent definition was established
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in Section 3.2., which is much easier to be applied. Another advantage of this

equivalent definition is that it allows us to characterize modular frames from the

operator theory point of view which is the goal of Section 3.3. It is very interesting

that if we remove an element from a basis, then we must get a set which is not a

basis. But for frame this is not the case. Due to the redundancy of frame if we

remove an element from a frame we may get a new frame. In Section 3.4 we will

give a characterization of the removal of an element from a modular frame.

The aim of Chapter 4 is to characterize the modular Riesz bases and their

duals. We first give a characterization of Riesz bases in Hilbert C∗-modules

in Section 4.1. It is well-known that in Hilbert spaces every Riesz basis has a

unique dual which is also a Riesz basis. But in Hilbert C∗-modules, due to the

zero-divisors, not all Riesz bases have unique duals and not every dual is a Riesz

basis. We will present several such examples showing that the duals of Riesz

bases in Hilbert C∗-modules are much different and more complicated than the

Hilbert space cases. For example, a dual sequence of a Riesz basis can even not

be a Bessel sequence, and a dual Bessel sequence of a Riesz basis may not be a

Riesz basis. Several examples are provided in Section 4.2 to show the complexity

of duals of modular Riesz bases. We also characterize all the dual sequences for

a Riesz basis. And a necessary and sufficient condition for a dual sequence of a

Riesz basis to be a Riesz basis is given in Section 4.2.

The main purpose of Chapter 5 is to initiate the study of structured frames

for Hilbert C∗-modules. In Hilbert space frame theory, structured frames are the

ones that have attracted the most attentions. Typical examples include wavelet

frames, Gabor frames and frames induced by group representations. These frames

are the ones that have been the main focuses in the research of frame theory. In

[19], Dai and Larson introduced one class of structure frames: frames associ-

ated with a system of unitary operators. The systematic study of this kind of

structured frames can be found in the two memoirs papers [19, 37]. In this chap-

ter, we will focus our attention on the frames induced by a group of unitary

operators. More precisely, we work on two closely related issues: frame vector

parameterizations and Parseval frame approximations.
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In [19] the set of all wandering vectors for a unitary system was parameterized

by the set of unitary operators in the so-called local commutant of the system at

a particular fixed wandering vector. However, unlike the wandering vector case,

it was shown in [37] that the set of all the Parseval frame vectors for a unitary

group can not be parameterized by the set of all the unitary operators in the

commutant of the unitary group. This means that the Parseval frame vectors

for a representation of a countable group are not necessarily unitarily equivalent.

However, this set can be parameterized by the set of all the unitary operators in

the von Neumann algebra generated by the representation ([32, 37]). This turns

out to be a very useful result in Gabor analysis (cf. [32, 29]). Although it remains

a question whether this result is still valid in the Hilbert C∗-module setting, in

Section 5.1 we will prove that this result holds in Hilbert C∗-modules when the

underlying C∗-algebra is a commutative W ∗-algebra.

In the Hilbert space frame setting, the original work on symmetric orthogonal-

ization was done by Löwidin ([47]) in the late 1970’s. The concept of symmetric

approximation of frames by Parseval frame was introduced in [27] to extend the

symmetric orthogonalization of bases by orthogonal bases in Hilbert spaces. The

existence and the uniqueness results for the symmetric approximation of frames

by Parseval frames were obtained in [27]. Following their definition, a Parseval

frame {yj}∞j=1 is said to be a symmetric approximation of frame {xj}∞j=1 in Hilbert

space H if it is similar to {xj}∞j=1 and

n∑
j=1

‖zj − xj‖2 ≥
n∑

j=1

‖yj − xj‖2 (1.1)

is valid for all Parseval frames {zj}∞j=1 of H that are similar to {xj}∞j=1.

Note that in some situations the symmetric approximation fails to work when

the underlying Hilbert space is infinite dimensional since if we restrict ourselves

to the frames induced by a unitary system then the summation in (1.1) is always

infinite when the given frame is not Parseval. Instead of using the symmetric

approximations to consider the frames generated by a collection of unitary trans-

formations and some window functions, it was proposed to approximate the frame
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generator by Parseval frame generators. The existence and uniqueness results for

such a best approximation were obtained in [32, 33]. In Section 5.2 we will prove

that this result still holds for Hilbert C∗-module frames when the underlying C∗-

algebra is commutative. It remains open whether this is true when the underlying

C∗-algebra is non-commutative.

In Chapter 6 we will investigate the dilation of modular frames. It is well-

known that every frame in Hilbert space is a direct summand of Riesz basis, in

other words, each frame is a compression of a Riesz basis of a larger space. In

[26] it was shown that this is still true for the modular frames. In particular, it

was prove in ([26]) that each Parseval frame of Hilbert C∗-modules can be dilated

to an orthonormal basis. It is natural to ask whether a complete Parseval frame

vector for a unitary group on Hilbert C∗-module can be dilated to a complete

wandering vector. We will answer this question affirmatively in Section 6.1.

More generally, a dual frame pair in Hilbert space can be dilated to a Riesz basis

and its dual Riesz basis (see [13]). In Section 6.2 we will see that this remains

true for Hilbert C∗-module frames. We want to mention here that the proof of

this result for Hilbert space frames used in [13] can not be directly applied to

Hilbert C∗-module frames since the adjointablity of operators is always an issue

in dealing with operators in Hilbert C∗-modules. In Section 6.3 we will discuss

the projective frames for future study.

Let {fj}∞j=1 be a basis of a Banach space X, and {gj}∞j=1 a sequence of vectors

in X. If there exists a constant λ ∈ [0, 1) such that

‖
∑

cj(fj − gj)‖ ≤ λ‖
∑

cjfj‖

for all finite sequence {cj} of scalars, then {gj}∞j=1 is also a basis for X. This

result is the well-known classical Paley-Wiener Theorem on perturbation of bases

([48]).

In the last decade, many attentions have been paid to generalize the Paley-

Wiener perturbation result to the perturbation of frames in Hilbert spaces (see

[5], [11], [15] and [16]). The most general result was obtained by Casazza and

Christensen ([11]):
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Theorem 1.1. Let {xj}j∈J be a frame for a Hilbert space H with frame bounds

C and D. Suppose that {yj}j∈J is a sequence of H and there exist λ1, λ2, µ ≥ 0

such that max{λ1 + µ√
C
, λ2} < 1. If one of the following conditions is fulfilled for

any finite scalar sequence {cj} and all x ∈ H, then {yj}j∈J is also a frame for H:

(1) (
∑

j∈J |〈x, xj−yj〉|2)
1
2 ≤ λ1(

∑
j∈J |〈x, xj〉|2)

1
2 +λ2(

∑
j∈J |〈x, yj〉|2)

1
2 +µ‖x‖;

(2) ‖
∑n

j=1 cj(xj − yj)‖ ≤ λ1‖
∑n

j=1 cjxj‖+ λ2‖
∑n

j=1 cjyj‖+ µ(
∑n

j=1 |c|2)
1
2 .

Moreover, if {xj}j∈J is a Riesz basis for H and {yj}j∈J satisfies (2), then

{yj}j∈J is also Riesz basis for H.

The purpose of Chapter 7 is to investigate whether the above perturbation

result remains valid for Hilbert C∗-modular frames. We prove that the Casazza-

Christensen general perturbation theorem for frames in Hilbert spaces remains

valid in Hilbert C∗-modules. In the Hilbert space setting, under the same per-

turbation condition, the perturbation of any Riesz basis remains a Riesz basis.

However, this no longer holds for Riesz bases in Hilbert C∗-modules. We give

a complete characterization on all the Riesz bases for Hilbert C∗-modules such

that the perturbation (under Casazza-Christensen’s perturbation condition) of a

Riesz basis still remains a Riesz basis.

8



CHAPTER 2

PRELIMINARIES

2.1 Frames in Hilbert Spaces

2.1.1 Frames in Hilbert Spaces

The main feature of a basis {fk}∞k=1 in a Hilbert space H is that every f ∈ H can

be represented as an (infinite) linear combination of the elements fk in the basis:

f =
∞∑

k=1

ck(f)fk. (2.1)

The coefficients ck(f) are unique. We now introduce the concept of frames. A

frame is also a sequence of elements {fk}∞k=1 in H, which allows every f ∈ H to

be written as in (2.1). However, the corresponding coefficients are not necessarily

unique. Thus a frame might not be a basis.

We now give the definition of frames.

Definition 2.1. A sequence {fk}∞k=1 of elements in Hilbert space H is a frame

for H if there exist constants A,B > 0 such that

A‖f‖2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ H. (2.2)

The numbers A,B are called frame bounds. They are not unique.

If A = B, then {fk}∞k=1 is called a tight frame, and a Parseval frame if

A = B = 1.
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Particularly, if the right inequality

∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ H,

holds true, we call {fk}∞k=1 a Bessel sequence.

We now give a few more examples of frames. They might appear quite con-

structed, but are useful for the theoretical understanding of frames.

Example 2.2. Let {ek}∞k=1 be an orthonormal basis for a Hilbert space H.

(1) By repeating each element of {ek}∞k=1 twice we have

{fk}∞k=1 = {e1, e1, e2, e2, . . . }

which is a tight frame with frame bound A = B = 2.

If only e1 is repeated we get

{fk}∞k=1 = {e1, e1, e2, e3, . . . }

which is a frame with bounds A = 1 and B = 2.

(2) Let

{fk}∞k=1 = {e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . . }.

Note that for each f ∈ H, we have

∞∑
k=1

|〈f, fk〉|2 =
∞∑

k=1

k|〈f, 1√
k
ek〉|2 = ‖f‖2.

So {fk}∞k=1 is a Parseval frame.

Example 2.3. Let H and K be Hilbert spaces with H ⊂ K, and let {ej}∞j=1

be an orthonormal basis for K. Let P denote the orthogonal projection from K

onto H, and let xj = Pej for all j. If x ∈ H is arbitrary, then

‖x‖2 =
∑

j

|〈x, ej〉|2 (2.3)
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and

x =
∑

j

〈x, ej〉ej. (2.4)

Since x = Px and xj = Pej we have 〈x, ej〉 = 〈x, xj〉, so (2.3) becomes

‖x‖2 =
∑

j

|〈x, xj〉|2

and hence {xj}∞j=1 is a Parseval frame for H. Moreover, applying P to (2.4) then

yields

x =
∑

j

〈x, xj〉xj (2.5)

for all x ∈ H. The formula (2.5) is called the reconstruction formula for {xj}.

Let {fk}∞k=1 be a frame of Hilbert space H, then we have the corresponding

pre-frame operator, analysis operator and frame operator as follows.

The operator T : H → l2 defined by

Tf = {〈f, fk〉}∞k=1,

is called the analysis operator. The adjoint operator T ∗ : l2 → H is given by

T ∗{ck}∞k=1 =
∞∑

k=1

ckfk.

T ∗ is called pre-frame operator or the synthesis operator. By composing T and

T ∗, we obtain the frame operator S : H → H:

Sf = T ∗Tf =
∞∑

k=1

〈f, fk〉fk.

Let state some of the important properties of S:

Proposition 2.4. Let {fk}∞k=1 be a frame with frame operator S and frame bounds

A,B. Then the following holds:

(1) S is bounded, invertible, self-adjoint, and positive.

(2) {S−1fk}∞k=1 is a frame with bounds B−1, A−1. The frame operator for

{S−1fk}∞k=1 is S−1.
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The most important frame result is the following reconstruction formula. It

shows that if {fk}∞k=1 is a frame for Hilbert space H, then every element in H has

a representation as an infinite linear combination of the frame elements. Thus it

is natural to view a frame as some kind of ”generalized basis”.

Theorem 2.5. Let {fk}∞k=1 be a frame with frame operator S for Hilbert space

H. Then

f =
∞∑

k=1

〈f, S−1fk〉fk, ∀f ∈ H. (2.6)

It should be mentioned here that to every frame we can associate a canonical

Parseval frame:

Proposition 2.6. Let {fk}∞k=1 be a frame for Hilbert space H with frame operator

S. Denote the positive square root of S−1 by S−
1
2 . Then {S− 1

2fk}∞k=1 is a Parseval

frame, and

f =
∞∑

k=1

〈f, S−
1
2fk〉S−

1
2fk, ∀f ∈ H.

We now introduce the definition of dual frames.

Definition 2.7. Let {fk}∞k=1 be a frame of a Hilbert space H. We call a sequence

{gk}∞k=1 ⊆ H a dual frame of {fk}∞k=1 if

f =
∞∑

k=1

〈f, gk〉fk

holds true for every f ∈ H.

In particular, {S−1fk}∞k=1 is called the canonical dual (or. standard dual) of

{fk}∞k=1, where S is the frame operator of {fk}∞k=1.

Note that the roles of a frame and its duals can be interchanged in the fol-

lowing sense.

Proposition 2.8. Assume that {fk}∞k=1 and {gk}∞k=1 are Bessel sequences in

Hilbert space H. Then the following are equivalent:
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(1) f =
∑∞

k=1〈f, gk〉fk, ∀f ∈ H.

(2) f =
∑∞

k=1〈f, fk〉gk, ∀f ∈ H.

(3) 〈f, g〉 =
∑∞

k=1〈f, fk〉〈gk, f〉, ∀f, g ∈ H.

In case the equivalent conditions are satisfied, {fk}∞k=1 and {gk}∞k=1 are dual

frames for H.

We now list some characterizations of frames in Hilbert spaces from the op-

erator theory point of view.

Theorem 2.9. A sequence {fk}∞k=1 in Hilbert space H is a frame for H if and

only if

T : {ck}∞k=1 →
∞∑

k=1

ckfk

is a well-defined mapping of l2 onto H.

Note that the question of existence of an upper and lower frame bound, via

Theorem 2.9, is replaced by an investigation of infinite series: we need to check

that
∑∞

k=1 ckfk converges for all {ck}∞k=1 ∈ l2 and that each f ∈ H can be

represented via such an infinite series. The following characterization of frames

involves the information about the frame bounds.

Theorem 2.10. A sequence {fk}∞k=1 in Hilbert space H is a frame for H with

bounds A,B if and only if the following conditions are satisfied:

(1) span{fk}∞k=1 = H;

(2) The pre-frame operator T is well defined on l2 and

A
∞∑

k=1

|ck|2 ≤ ‖T{ck}∞k=1‖2 ≤ B
∞∑

k=1

|ck|2, ∀{ck}∞k=1 ∈ (KerT )⊥.

2.1.2 Riesz Bases in Hilbert Spaces

There are many equivalent definitions for Riesz bases in Hilbert spaces. Here we

adopt the following:

13



Definition 2.11. A Riesz basis for a Hilbert space H is a family of the form

{Uek}∞k=1, where {ek}∞k=1 is an orthonormal basis for H and U : H → H is a

bounded bijective operator.

A Riesz basis is actually a basis. In fact, one can characterize Riesz bases in

terms of bases satisfying extra conditions:

Proposition 2.12. A sequence {fk}∞k=1 is a Riesz basis for Hilbert space H if it

is an unconditional basis for H and

0 < inf
k
‖fk‖ ≤ sup

k
‖fk‖ <∞.

The dual basis associated to a Riesz basis is also a Riesz basis and is unique:

Proposition 2.13. If {fk}∞k=1 is a Riesz basis for Hilbert space H, there exists

a unique sequence {gk}∞k=1 in H satisfying

f =
∞∑

k=1

〈f, gk〉fk, ∀f ∈ H.

{gk}∞k=1 is also a Riesz basis, and {fk}∞k=1 and {gk}∞k=1 are biorthogonal.

Note that a Riesz basis is a frame:

Proposition 2.14. If {fk}∞k=1 is a Riesz basis for Hilbert space H, then there

exist constants A,B such that

A‖f‖2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ H.

For a frame to be a Riesz basis, we have the following proposition:

Proposition 2.15. Let {fj}∞j=1 be a frame for Hilbert space H. Then the follow-

ing are equivalent:

(1) {fj}∞j=1 is a Riesz basis for H.

(2) {fj}∞j=1 is an exact frame, i.e. it ceases to be a frame when an arbitrary

element is removed.
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(3) {fj}∞j=1 is minimal, i.e. fj /∈ span{jk : k 6= j} for any j.

(4) {fj}∞j=1 and {S−1fj}∞j=1 are biorthogonal, where S is the frame operator

of {fj}∞j=1.

(5) If
∑∞

j=1 cjfj = 0 for some {cj}∞j=1 ∈ l2, then cj = 0 for all j.

(6) {fj}∞j=1 is a basis.

We now list a characterization of Riesz bases for Hilbert spaces.

Proposition 2.16. For a sequence {fk}∞k=1 in Hilbert space H, the following

conditions are equivalent:

(1) {fk}∞k=1 is a Riesz basis for H.

(2) span{fk}∞k=1 = H, and there exist constants A,B > 0 such that for any

finite sequence {ck} one has

A
∑

|ck|2 ≤ ‖
∑

ckfk‖2 ≤ B
∑

|ck|2.

Let’s summarize the relations between orthonormal bases, Riesz bases and

frames in Hilbert spaces as follows.

Theorem 2.17. Let {ek}∞k=1 be an arbitrary orthonormal basis for Hilbert space

H. Then

(1) The orthonormal bases of H are the families {Uek}∞k=1, where linear op-

erator U : H → H is unitary.

(2) The Riesz bases of H are the families {Uek}∞k=1, where linear operator

U : H → H is bounded and bijective.

(3) The frames of H are the families {Uek}∞k=1, where linear operator U :

H → H is bounded and surjective.
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2.1.3 Dilation Results of Frames

It turns out that Example 2.3 is a generic and serves as a model for arbitrary

Parseval frames. One can always dilate such a frame to an orthonormal basis.

One immediate consequence of the dilation is that the reconstruction formula

(2.5) always holds for a Parseval frame. We have the following dilation result.

Proposition 2.18. ([37]) Let J be a countable (or finite) index set. Suppose that

{xj}j∈J is a Parseval frame for Hilbert space H. Then there exist a Hilbert space

K ⊇ H and an orthonormal basis {ej}j∈J for K such that xj = Pej, where P is

the orthogonal projection from K onto H.

Also we can summarize the dilation results in the following way.

Proposition 2.19. Frames are precisely the inner direct summands of Riesz

bases. Parseval frames are precisely the inner direct summands of orthonormal

bases.

Example 2.20. Let {e1, e2, e3} be an orthonormal basis for a 3-dimensional

Hilbert space K. Another orthonormal basis for K is then

{ 1√
3
(e1 + e2 + e3),

1√
6
(e1 − 2e2 + e3),

1√
2
(e1 − e3)}.

Note that

{ 1√
3
(e1 + e2),

1√
6
(e1 − 2e2),

1√
2
e1}

is a Parseval frame for H = span{e1, e2}.

Suppose that {uj} is a Riesz basis for a Hilbert space K ⊃ H with its unique

dual {u∗j}. If P is the orthogonal projection from K onto H then {Puj} is a

frame for H with an alternate dual {Pu∗j}. In general {Pu∗j} is not the canonical

dual for {Puj} unless P commutes with the frame operator of {uj} (see [37]).

So it is natural to ask whether a given frame {xj} and one of its alternate duals

{yj} can be dilated to a Riesz basis {uj} for some larger Hilbert space K so that

xj = Puj and yj = Pu∗j . It was affirmatively answered in [13] as follows.
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Proposition 2.21. Suppose that {xj} and {yj} are alternate dual frames in a

Hilbert space H. Then there is a Hilbert space K ⊃ H and a Riesz basis {uj} for

K with Puj = xj and Pu∗j = yj, where {u∗j} is the (unique) dual of {uj} and P

is the orthogonal projection from K onto H.

2.1.4 Structured Frames in Hilbert Spaces

In applications the most important and practical frames are the ones that are

generated by a single vector in a Hilbert space under the action of a suitable

collection of unitary operators. Wavelet frames and Gabor frames are typical

examples. A unitary system U is a countable set of unitary operators acting on

a separable Hilbert space H that contains the identity operator. We say that a

vector φ ∈ H is a complete frame vector (resp. complete Parseval frame vector)

for U if Uφ := {Uφ : U ∈ U} is a frame (resp. Parseval frame) for H. When Uφ
is an orthonormal basis for H, φ is called a complete wandering vector for U , the

set of all complete wandering vectors for U is denoted by W(U).

If U is a unitary system and φ ∈ W(U), the local commutant Cφ(U) at φ is

defined by {T ∈ B(H) : (TU − UT )φ = 0, U ∈ U}. Clearly Cφ(U) contains the

commutant U ′ of U . When U is a unitary group, it is actually the commutant of

U .

For the characterization of frame vectors for unitary systems we have the

following result.

Proposition 2.22. ([19], [32]) Suppose that φ is a complete wandering vector

for a unitary system U . Then

(1) a vector ξ ∈ H is a complete wandering vector for U if and only if there

is a (unique) unitary operator A ∈ U ′ such that ξ = Aφ.

(2) a vector η ∈ H is a complete Parseval frame vector for U if and only if

there is a (unique) co-isometry A ∈ Cφ(U) such that η = Aφ.
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Recall that a unitary system U is said to be group-like if

group(U) ⊂ TU := {tU : t ∈ T, U ∈ U}

and if different U and V in U are always linearly independent, where group(U)

denotes the group generated by U with respect to multiplication and T denotes

the unit circle.

We have the following parameterization of frame vectors at a fixed complete

Parseval frame vector for group-like unitary systems.

Proposition 2.23. ([32]) Let η be a complete Parseval frame vector for a group-

like unitary system U and w∗(U) be the von Neumann algebra generated by U .

Suppose that ξ ∈ H. Then

(1) ξ is a complete Parseval frame vector for U if and only if there exists a

unitary operator A ∈ w∗(U) such that Aη = ξ.

(2) ξ is a complete frame vector for U if and only if there exists an invertible

operator A ∈ w∗(U) such that Aη = ξ.

Another kind of important structured frames is multi-generated frames which

are generated by some (usually finite number of) vectors under the action of a

collection of unitary operators. For example, Gabor frames and wavelet frames

are of this kind. Recall that Φ = (φ1, . . . , φN) with φj ∈ H is called a multi-

frame generator (resp. Parseval multi-frame generator) for a unitary system U
if {Uφj : U ∈ U , 1 ≤ j ≤ N} is a frame (resp. Parseval frame) for H.

We now define the best Parseval multi-frame approximation for a multi-frame

generator.

Definition 2.24. Let Φ = (φ1, . . . , φN) be a multi-frame generator for a unitary

system U . Then a Parseval multi-frame generator Ψ = (ψ1, . . . , ψN) for U is

called a best Parseval multi-frame approximation for Φ if the inequality

N∑
j=1

‖φj − ψj‖2 ≤
N∑

j=1

‖φj − ξj‖2

is valid for all the Parseval multi-frame generator Ξ = (ξ1, . . . , ξN) for U .
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The following result was proved in [33].

Proposition 2.25. Let U be a group-like unitary system acting on a Hilbert space

H and let Φ = (φ1, . . . , φN) be a multi-frame generator for U . Then S−1/2Φ is

the unique best Parseval multi-frame approximation for Φ, where S is the frame

operator for the multi-frame {Uφj : U ∈ U , j = 1, . . . , N}.

2.2 Hilbert C∗-modules

The aim of this section is to cover the basic results of Hilbert C∗-modules. To

introduce the concept of Hilbert C∗-modules, we first introduce the definition of

C∗-algebras.

2.2.1 C∗-algebras and W ∗-algebras

Let’s begin with

Definition 2.26. Let A be an associative algebra over the complex numbers.

The algebra A is called a normed algebra if there is associated to each element x

a real number ‖x‖, called the norm of x, with the properties:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(3) ‖λx‖ = |λ|‖x‖, λ is a complex number.

(4) ‖xy‖ ≤ ‖x‖‖y‖

If A is complete with respect to the norm (i.e. if A is also a Banach space),

then it is called a Banach algebra.

Note that any closed subalgebra of a Banach algebra is a Banach algebra.
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Example 2.27. (1) Let X be a Banach space, denote by B(X) the set of all

bounded linear operators on X. Then B(X) is a Banach algebra with the

pointwise-defined operations for addition and scalar multiplication, multiplica-

tion given by (AB)(x) = A(B(x)), and the operator norm.

(2) The algebra Mn(C) of n× n-matrices with entries in C is identified with

B(Cn). It is therefore a Banach algebra.

Definition 2.28. Let A be a unital Banach algebra and a an element of A. Then

a is invertible if there is an element b ∈ A such that

ab = ba = 1.

The set

Inv(A) = {a ∈ A : a is invertible}

is a group under multiplication.

We define the spectrum of an element a to be the set

σ(a) = {λ ∈ C : λ1− a /∈ Inv(A)}.

Example 2.29. (1) Let A = C(X), where X is a compact Hausdorff space.

Then σ(f) = f(X) for all f ∈ A.

(2) Let A = Mn(C), the algebra of all complex n×n-matrices. Then for each

A ∈ A, σ(A) is the set of eigenvalues of A.

Definition 2.30. Let A be a Banach algebra. A mapping x 7→ x∗ of A into

itself is called an involution if for all x, y ∈ A and any scalar λ ∈ C the following

conditions are satisfied:

(1) (x∗)∗ = x.

(2) (x+ y)∗ = x∗ + y∗.

(3) (xy)∗ = y∗x∗.

(4) (λx)∗ = λx∗.

Then A is called a Banach ∗-algebra.
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Definition 2.31. A Banach ∗-algebra A is called a C∗-algebra if it satisfies

‖x∗x‖ = ‖x‖2 (2.7)

for all x ∈ A.

Here are a few examples.

Example 2.32. (1) B(H), the algebra of bounded linear operator on a Hilbert

space H, is a C∗-algebra, where for each operator A, A∗ is the adjoint of A.

(2) Any closed ∗-subalgebra of B(H) is a C∗-algebra.

(3) C(X), the algebra of continuous functions on a compact space X, is an

abelian C∗-algebra, where f ∗(x) ≡ f(x).

(4) C0(X), the algebra of continuous functions on a locally compact space X

that vanish at infinity, is an abelian C∗-algebra, where f ∗(x) ≡ f(x).

Definition 2.33. Let A be a unital C∗-algebra and a, p, u ∈ A. Then

(1) a is normal if a∗a = aa∗.

(2) p is a projection if p = p∗ = p2.

(3) u is a unitary if u∗u = uu∗ = 1.

(4) u is an isometry if u∗u = 1.

(5) u is a co-isometry if uu∗ = 1.

For the spectrum of normal elements in C∗-algebras we have the following

famous Spectral Mapping Theorem.

Theorem 2.34. Let a be a normal element of a unital C∗-algebra A, and f ∈
C(σ(a)). Then

σ(f(a)) = f(σ(a)).

Definition 2.35. An element a of a C∗-algebra A is positive if a∗ = a and

σ(a) ⊆ R+. We write a ≥ 0 to mean that a is positive.

We have the following characterizations on positive elements.
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Proposition 2.36. Let A be a C∗-algebra. The following statements are equiv-

alent:

(1) a is positive.

(2) a = b2 for some positive element b ∈ A.

(3) a = x∗x for some x ∈ A.

(4) a∗ = a and ‖t− a‖ ≤ t for all t ≥ ‖a‖.

(5) a∗ = a and ‖t− a‖ ≤ t for some t ≥ ‖a‖.

We summarize some elementary factors about positive elements in the follow-

ing proposition.

Proposition 2.37. Let A be a C∗-algebra.

(1) If 0 ≤ a and 0 ≤ b, then 0 ≤ a+ b.

(2) If 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.

(3) If A is unital and a, b are positive invertible elements in A, then a ≤ b

implies 0 ≤ b−1 ≤ a−1.

(4) If a, b are positive elements in A, then a ≤ b implies that at ≤ bt for any

t ∈ (0, 1).

(5) If a2 ≤ b2 for all a, b ∈ A with 0 ≤ a ≤ b, the A must be commutative.

(6) If a, b ∈ A, then abb∗a∗ ≤ ‖b‖2aa∗ and abb∗a∗ ≤ ‖a‖2bb∗.

We now give the definition of W ∗-algebras as follows.

Definition 2.38. A C∗-algebra M is called a W ∗-algebra if it is a dual space as

a Banach space, i.e., if there exists a Banach space M∗ such that (M∗)
∗ = M,

where (M∗)
∗ is the dual Banach space of M∗.

Definition 2.39. Let p, q be two projections of a W ∗-algebra M. If there exists

a partial isometry u in M such that u∗u = p and uu∗ = q, then p is said to be

equivalent to q and denote this by p ∼ q. If there exists a projection q1(≤ q)

equivalent to p, write this by p ≺ q or q � p.
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For the equivalence of projections we have the famous Comparability Theo-

rem.

Theorem 2.40. Let p and q be projections of a W ∗-algebra M. Then there exists

a central projection z ∈M such that

pz � qz and pz′ ≺ qz′

where z′ = 1− z.

Definition 2.41. Let p be a projection of a W ∗-algebra M. p is said to be finite

if for a projection p1 in M, p1 ≤ p and p1 ∼ p imply p1 = p.

Definition 2.42. A W ∗-algebra is said to be finite if its identity is finite.

Note that a W ∗-algebra M is finite if and only if every isometry in M is

unitary.

For the equivalence of projections in finite W ∗-algebras we have the following

result.

Proposition 2.43. let M be a finite W ∗-algebra, and let p, p1, q and q1 be pro-

jections in M satisfying the following conditions:

p1 ≤ p, q1 ≤ q, p1 ∼ q1 and p ∼ q.

Then p− p1 ∼ q − q1.

Particularly we have

Corollary 2.44. Let M be a finite W ∗-algebra, and p, q be two equivalent pro-

jections in M. Then 1− p and 1− q are equivalent.

2.2.2 Hilbert C∗-modules

Hilbert C∗-modules form a category in between Banach spaces and Hilbert spaces.

The basic idea was to consider module over C∗-algebra instead of linear space
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and to allow the inner product to take values in a more general C∗-algebra than

C. The structure was first used by Kaplansky [42] in 1952 and more carefully

investigated by Rieffel [51] and Paschke [49] later in 1972/73.

We give only a brief introduction to the theory of Hilbert C∗-modules to

make our explanations self-contained. For comprehensive accounts we refer to

the lecture note of Lance [46] and the book of Wegge-Olsen [55].

We now give the definition of Hilbert C∗-modules.

Definition 2.45. Let A be a C∗-algebra and H be a (left) A-module. Suppose

that the linear structures given on A and H are compatible, i.e. λ(ax) = a(λx)

for every λ ∈ C, a ∈ A and x ∈ H. If there exists a mapping 〈·, ·〉 : H×H → A
with the properties

(1) 〈x, x〉 ≥ 0 for every x ∈ H,

(2) 〈x, x〉 = 0 if and only if x = 0,

(3) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ H,

(4) 〈ax, y〉 = a〈x, y〉 for every a ∈ A, and every x, y ∈ H,

(5) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for every x, y, z ∈ H.

Then the pair {H, 〈·, ·〉} is called a (left-) pre-HilbertA-module. The map 〈·, ·〉
is said to be an A-valued inner product. If the pre-Hilbert A-module {H, 〈·, ·〉}
is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖ 1

2 then it is called a Hilbert

A-module.

Here are some important examples.

Example 2.46. The C∗-algebra A itself can be reorganized to become a Hilbert

A-module if we define the inner product

〈a, b〉 = ab∗, ∀a, b ∈ A.

The corresponding norm is just the norm on A because of the C∗-equation (2.7).

Example 2.47. If {Hi}n
k=1 be a finite set of Hilbert A-modules over a C∗-algebra

A, then one can define the direct sum ⊕n
k=1Hk. The inner product on ⊕n

k=1Hk is
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given by the formula

〈x, y〉 :=
n∑

k=1

〈xk, yk〉Hk
,

where x = x1 ⊕ x2 ⊕ · · · ⊕ xn, y = y1 ⊕ y2 ⊕ · · · ⊕ yn ∈ ⊕n
k=1Hk. Then ⊕n

k=1Hk is

a Hilbert A-module.

We denote the direct sum of n copies of a Hilbert C∗-module H by Hn.

Example 2.48. If {Hk}, k ∈ N is a countable set of Hilbert A-modules over

C∗-algebra A, then one can define their direct sum ⊕k∈NHk. On the A-module

⊕k∈NHk of all sequences x = (x1, x2, . . . ), xk ∈ Hk, such that the series
∑

k∈N〈xk, xk〉
is norm-convergent in the C∗-algebra A, we define the inner product by

〈x, y〉 :=
∑
k∈N

〈xk, yk〉Hk

for x, y ∈ ⊕k∈NHk.

Then ⊕k∈NHk is a Hilbert A-module.

The direct sum of a countable number of copies of a Hilbert C∗-module H is

denoted by l2(H).

Note that in Hilbert C∗-modules the Cauchy-Schwartz Inequality is valid.

Proposition 2.49. Let H be a Hilbert C∗-module, and x, y ∈ H, then

‖〈x, y〉‖2 ≤ ‖〈x, x〉‖ · ‖〈y, y〉‖.

We are especially interested in finitely and countably generated Hilbert C∗-

modules over unital C∗-algebra A. A Hilbert A-module H is (algebraically) fi-

nitely generated if there exists a finite set {x1, · · · , xn} ⊆ H such that every ele-

ment x ∈ H can be expressed as an A-linear combination x =
∑n

i=1 aixi, ai ∈ A.

A Hilbert A-module H is countably generated if there exists a countable set of

generators.

Note that algebraically finitely generated Hilbert A-module over unital C∗-

algebra A are precisely the finitely generated projective A-modules in a pure

algebraic sense.
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Theorem 2.50. Let A be a unital C∗-algebra. Every algebraically finitely gener-

ated Hilbert A-module H is an orthogonal summand of some free Hilbert A-module

An for a finite number n.

Let A be a C∗-algebra. The Hilbert A-module l2(A) serves as an universal

environment for countably generated Hilbert A-module that can be described

as (special) orthogonal summands. This result was given by Kasparov ([43]) in

1980.

Theorem 2.51. Let A be a unital C∗-algebra. Every countably generated Hilbert

A-module H posses an embedding into l2(A) as an orthogonal summand in such

a way that the orthogonal complement of it is isometrically isomorphic to l2(A)

again, i.e. H⊕ l2(A) = l2(A).

Remark 2.52. Note that not every Hilbert C∗-module has an orthonormal basis.

Though any countably generated Hilbert C∗-module admits a standard frame,

there are countably generated Hilbert C∗-modules that contain no orthonormal

basis even orthogonal Riesz basis (see Example 3.4 in [26]).

We now list some properties of operators on Hilbert C∗-modules.

Definition 2.53. Let H be a Hilbert A-module over a C∗-algebra A. A map

T : H → H (a priori neither linear nor bounded) is said to be adjointable if there

exists a map T ∗ : H → H satisfying

〈x, Ty〉 = 〈T ∗x, y〉

for all x, y ∈ H. Such a map T ∗ is called the adjoint of T .

By End∗A(H) we denote the set of all adjointable maps on H.

It is surprising that every adjointable operator is automatically linear and

bounded.

Proposition 2.54. Suppose that T, S are two adjointable operators on a Hilbert

A-module H over a C∗-algebra A, then
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(1) The adjoint of T is unique and adjointable with T ∗∗ = T .

(2) ST is adjointable with (ST )∗ = T ∗S∗.

(3) T is a C-linear module map which is bounded with respect to the operator

norm.

(4) T ∗S = 0 if and only if T (H) ⊥ S(H).

(5) KerT = Ker|T |, KerT ∗ = T (H)⊥ and (KerT ∗)⊥ = T (H)⊥⊥ ⊃ T (H).

Proposition 2.55. Let H be a Hilbert A-module over a C∗-algebra A. Then

End∗A(H) is a C∗-algebra equipped with the operator norm

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}.

It should be mentioned here that, unlike B(H), End∗A(H) is not a von Neu-

mann algebra in general.

For adjointable operators we have the following Polar Decomposition Theo-

rem.

Theorem 2.56. Let H be a Hilbert C∗-module and T ∈ End∗(H), then the

following are equivalent:

(1) T has a polar decomposition T = V |T |, where V ∈ End∗(H) is a partial

isometry for which

KerV = KerT, KerV ∗ = KerT ∗,

V (H) = T (H), V ∗(H) = T (H).

(2) H = Ker|T | ⊕ |T |(H) and H = KerT ∗ ⊕ T (H).

(3) Both T (H) and |T |(H) are complementable in H.

The following result will be frequently used in this manuscript.

Theorem 2.57. Suppose that H is a Hilbert C∗-module and T an adjoint operator

on H with closed range, then T ∗ and |T | have closed ranges and

H = Ker|T | ⊕ |T |(H) = KerT ∗ ⊕ T (H) = KerT ⊕ T ∗(H).
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Definition 2.58. LetH be a Hilbert C∗-module andM⊆ H a submodule. Then

M is said to be complementable if H = M⊕N for some submodule N ⊆ H.

Note that submodules in Hilbert C∗-modules need not be complementable in

general. We have the following example.

Example 2.59. Let A = C[0, 1] be the set of all continuous functions on [0, 1]

with the norm closed ideal M = C0[0, 1], where C0[0, 1] = {f ∈ C[0, 1] : f(0) =

f(1) = 0}. In this case M is a Hilbert A-submodule with M⊥ = {0}, so

H 6= M⊕M⊥ and M 6= M⊥⊥ = H.

Since it is more convenient to work with orthogonal decompositions, we would

like to describe situations where such a decomposition exists.

Proposition 2.60. Suppose that H is a Hilbert C∗-module and T is an ad-

jointable operator on H with closed range, then both the range and kernel of T

are complementable in H.

Corollary 2.61. Let H be a Hilbert C∗-module. If P ∈ End∗(H) is an idempo-

tent, then its range is an orthogonally complementable submodule in H.

We also have

Proposition 2.62. A closed submodule of a Hilbert C∗-module is complementable

precisely when it is the range of an adjointable operator.

For a Hilbert A-module H over a C∗-algebra A, let us denote by H′ the set

of all bounded A-linear maps from H to A.

Definition 2.63. A Hilbert C∗-module H is called self-dual if H = H′.

The condition of self-duality is very strong. Below we shall see that there are

quite a few self-dual modules: any Hilbert module over a C∗-algebra A is self-

dual if and only if A is finite dimensional. If A is a unital C∗-algebra, then the

Hilbert module An is obviously self-dual. Self-dual Hilbert C∗-modules behave

quite like Hilbert spaces. In the same way as in the case of Hilbert spaces, the

following statements can be easily checked.
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Proposition 2.64. Let H be a self-dual Hilbert A-module over a C∗-algebra A,

K an arbitrary Hilbert A-module and T : H → K a bounded A-linear operator.

Then there exists an operator T ∗ : K → H such that the equality

〈Tx, y〉 = 〈x, T ∗y〉

holds for all x ∈ H and y ∈ K, i.e. T is adjointable.

Proposition 2.65. Let H be a self-dual Hilbert C∗-module and let H ⊂ K. Then

K = H⊕H⊥.

We complete this chapter by the following remark.

Remark 2.66. It should mention here that by no means all results of Hilbert

space theory can be simply generalized to the situation of Hilbert C∗-modules.

For example,

(1) The analogue of the Riesz representation theorem for bounded A-linear

mapping is not valid for H.

(2) Since in general a Hilbert C∗-moduleH need not be self-dual, the bounded

A-linear operator on H may not have an adjoint operator.

(3) Since a Hilbert C∗-submodule M of the Hilbert C∗-module H may not be

complementable in general, the corresponding projection may not be orthogonal.
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CHAPTER 3

HILBERT C∗-MODULE FRAMES

We first introduce the definition of modular frames and list some basic and im-

portant properties of modular frames. According to this definition we need to

compare positive elements in the underlying C∗-algebra in order to test whether

a sequence is a frame or not. This is not a trivial task. In Section 3.2 we give

an equivalent definition of frames in Hilbert C∗-modules which is much easier to

be applied. Based on this equivalent definition, we characterize modular frames

from the operator theory point of view in Section 3.3.

3.1 Frames in Hilbert C∗-modules

Definition 3.1. Let A be a unital C∗-algebra and J be a finite or countable

index set. A sequence {xj}j∈J of elements in a Hilbert A-module H is said to be

a frame if there exist two constants C,D > 0 such that

C · 〈x, x〉 ≤
∑
j∈J

〈x, xj〉〈xj, x〉 ≤ D · 〈x, x〉 (3.1)

for every x ∈ H. The optimal constants (i.e. maximal for C and minimal for D)

are called frame bounds.

The frame {xj}j∈J is said to be tight frame if C = D, and said to be Parseval

if C = D = 1.
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Likewise, {xj}j∈J is called a Bessel sequence with bound D if there exists

D > 0 such that ∑
j∈J

〈x, xj〉〈xj, x〉 ≤ D〈x, x〉 (3.2)

for every x ∈ H.

A sequence {xj}j∈J is said to be a Riesz basis of H if it is a frame and a

generating set with the additional property thatA-linear combinations
∑

j∈S ajxj

with coefficients {aj : j ∈ S} ⊆ A and S ∈ J are equal to zero if and only if in

particular every summand ajxj equals zero for j ∈ S.

We consider standard (normalized tight) frames, standard Bessel sequences

and standard Riesz bases in the main for which the sums in the inequalities (3.1)

and (3.2) always converges in norm.

It should be remarkable that following Theorem 2.50 and Theorem 2.51, it

was proved in [26] that every finitely generated or countably generated Hilbert

C∗-module admits a (standard) frame.

Note that we can also define the analysis operator, synthesis operator and

frame operator for modular frames as follows.

Suppose that {xj}j∈J is a frame of a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A.

The operator T : H → l2(A) defined by

Tx = {〈x, xj〉}j∈J,

is called the analysis operator. The adjoint operator T ∗ : l2(A) → H is given by

T ∗{cj}j∈J =
∑
j∈J

cjxj.

T ∗ is called pre-frame operator or the synthesis operator. By composing T and

T ∗, we obtain the frame operator S : H → H:

Sx = T ∗Tx =
∑
j∈J

〈x, xj〉xj. (3.3)
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The frame {S−1xj}j∈J is said to be the canonical dual frame of {xj}j∈J.

The main property of frames for Hilbert spaces is the existence of the recon-

struction formula that allows a simple standard decomposition of every element

of the spaces with respect to the frame. For the frames in Hilbert C∗-modules,

we have the following results.

Theorem 3.2. ([23]) Let A be a unital C∗-algebra, H be a finitely or count-

ably generated Hilbert A-module and {xj}j∈J be a Parseval frame (not necessarily

standard) of H. Then the reconstruction formula

x =
∑
j∈J

〈x, xj〉xj (3.4)

holds for every x ∈ H in the sense of convergence with respect to the topology that

is induced by the set of semi-norms {|f(〈·, ·〉)|1/2 : f ∈ A∗}. The sum converges

always in norm if and only if the frame {xj}j∈J is standard.

Also from equation (3.3) we see that

x =
∑
j∈J

〈x, S−1xj〉xj

is valid for every x ∈ H.

More generally, we have an existence and uniqueness result that provides us

with a reconstruction formula for standard frame. Also this result guarantees the

existence of a dual for any Hilbert C∗-module frame.

Theorem 3.3. ([26]) Let {xj}j∈J be a standard frame in a finitely or countably

generated Hilbert A-module H over a unital A-algebra A. Then there exists a

unique operator S ∈ End∗A(H) such that

x =
∑
j∈J

〈x, S(xj)〉xj (3.5)

for every x ∈ H. The operator can be explicitly given by the formula S = G∗G

for any adjointable invertible bounded operator G mapping H onto some other

Hilbert A-module K and realizing {G(xj) : j ∈ J} to be a standard normalized

tight frame in K.
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Similar to the case of Hilbert space frames, we also have the following dilation

result for modular frames.

Proposition 3.4. ([26]) Modular frames are precisely the inner direct summands

of standard Riesz bases of An or l2(A), where A is a C∗-algebra.

3.2 An Equivalent Definition of Modular Frames

Our first observation shows that the analysis operator of Bessel sequence is ad-

jointable.

Lemma 3.5. Let {xj}j∈J be a Bessel sequence of a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A. Then the analysis operator

T : H → l2(A) defined by

Tx =
∑
j∈J

〈x, xj〉ej

is adjointable and fulfills T ∗ej = xj for all j.

Proof. It follows directly from the proofs of Theorem 4.1 and Theorem 4.4 in

[26].

We need the following lemma to prove our results.

Lemma 3.6. ([49]) Let M and N be Hilbert A-module over a C∗-algebra A and

let T : M→N be a linear map. Then the following conditions are equivalent:

(1) the operator T is bounded and A-linear;

(2) there exists a constant K ≥ 0 such that the inequality 〈Tx, Tx〉 ≤ K〈x, x〉
holds in A for all x ∈M.

We have the following equivalent definition for Bessel sequences in Hilbert

C∗-modules.
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Lemma 3.7. Let {xj}j∈J be a sequence of a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Then {xj}j∈J is a Bessel sequence with

bound D if and only if

‖
∑
j∈J

〈x, xj〉〈xj, x〉‖ ≤ D‖x‖2

holds for all x ∈ H.

Proof. ”⇒” Obvious.

”⇐” Define a linear operator T : H → l2(A) by

Tx =
∑
j∈J

〈x, xj〉ej, ∀x ∈ H.

Then

‖Tx‖2 = ‖〈Tx, Tx〉‖ = ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖ ≤ D‖x‖2,

which implies that ‖Tx‖ ≤
√
D‖x‖. Hence T is bounded.

It is obvious that T is A-linear. Then by Lemma 3.6, we have

〈Tx, Tx〉 ≤ D〈x, x〉,

equivalently,
∑

j∈J〈x, xj〉〈xj, x〉 ≤ D〈x, x〉, as desired.

With the same argument we obtain the following equivalent definition of

frames in Hilbert C∗-modules.

Proposition 3.8. Let H be a finitely or countably generated Hilbert A-module

H over a unital C∗-algebra A and {xj}j∈J ⊆ H a sequence. Then {xj}j∈J is a

frame of H with bounds C and D if and only if

C‖x‖2 ≤ ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖ ≤ D‖x‖2

for all x ∈ H.
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One of the advantages of this equivalent definition is that it is much easier to

compare the norms of two elements than to compare two elements in C∗-algebras.

Using the above equivalent definition of frames we can easily prove the fol-

lowing result which will be used in the proofs of Theorem 4.9, Theorem 4.13 and

Theorem 6.2.

Proposition 3.9. Suppose that H be a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Let {xj}j∈J and {yj}j∈J be two Bessel

sequences in H. If x =
∑

j∈J〈x, yj〉xj holds for any x ∈ H, then both {xj}j∈J and

{yj}j∈J are frames of H and x =
∑

j∈J〈x, xj〉yj holds for all x ∈ H.

Proof. Let’s denote the Bessel bound of {yj}j∈J by DY . For all x ∈ H we have

‖x‖4 = ‖〈
∑
j∈J

〈x, yj〉xj, x〉‖2 = ‖
∑
j∈J

〈x, yj〉〈xj, x〉‖2

≤ ‖
∑
j∈J

〈x, yj〉〈yj, x〉‖ · ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖

≤ DY ‖x‖2 · ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖.

It follows that

D−1
Y ‖x‖2 ≤ ‖

∑
j∈J

〈x, xj〉〈xj, x〉‖.

Similarly, we can show that {yj}j∈J is also a frame of H.

It follows directly from Proposition 6.3 in [26] that

x =
∑
j∈J

〈x, xj〉yj

holds true for all x ∈ H.
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3.3 Characterizations of Frames and Bessel Sequences in

Hilbert C∗-modules

The aim of this section is to give some characterizations of Bessel sequences and

frames in Hilbert C∗-modules from the operator-theoretic point of view. These

results will be used to prove our main results in Chapter 7.

The following lemma is due to Heuser ([38]). Heuser only considered the

l2(C)-sequence case, but his proof works in more general setting. We include the

proof here for the sake of completeness.

Lemma 3.10. Let A be a C∗-algebra and {cj}j∈J a sequence in A. If
∑

j∈J cjξ
∗
j

converges for all {ξj}j∈J ∈ l2(A), then {cj}j∈J ∈ l2(A).

Proof. We define a sequence of operators Fn and an operator F by

Fn({ξj}) =
n∑

j=1

cjξ
∗
j and F ({ξj}) =

∞∑
j=1

cjξ
∗
j , ∀{ξj} ∈ l2(A).

Observe that

‖Fn({ξj})‖2 = ‖
n∑

j=1

cjξ
∗
j ‖2 ≤ ‖

n∑
j=1

cjc
∗
j‖ · ‖

n∑
j=1

ξjξ
∗
j ‖ ≤ ‖{cj}‖2 · ‖

n∑
j=1

ξjξ
∗
j ‖.

It follows that Fn is bounded for each n.

Clearly, Fn → F pointwise as n → ∞, so F is bounded by the Uniform

Boundedness Theorem. Therefore ‖F ({ξj})‖ ≤ ‖F‖·‖{ξj}‖ for each {ξj} ∈ l2(A).

Now fix n, and let

ξj =

{
c∗j , if 1 ≤ j ≤ n;

0, otherwise.

Then {ξj} ∈ l2(A).
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We compute

‖
n∑

j=1

cjc
∗
j‖ = ‖

n∑
j=1

cjξj‖ ≤ ‖F‖ · ‖{ξj}‖

= ‖F‖ · ‖
∞∑

j=1

ξjξ
∗
j ‖

1
2 = ‖F‖ · ‖

n∑
j=1

ξjξ
∗
j ‖

1
2

= ‖F‖ · ‖
n∑

j=1

cjc
∗
j‖

1
2 .

Therefore ‖
∑n

j=1 cjc
∗
j‖

1
2 ≤ ‖F‖. It follows that ‖

∑∞
j=1 cjc

∗
j‖

1
2 ≤ ‖F‖, and hence

{cj} ∈ l2(A).

We first give a characterization of Bessel sequences in terms of operators in

Hilbert C∗-modules.

Proposition 3.11. Let {xj}j∈J be a sequence of a finitely or countably gener-

ated Hilbert A-module H over a unital C∗-algebra A. Then {xj}j∈J is a Bessel

sequence with Bessel bound D if and only if the operator U : l2(A) → H defined

by

U{cj}j∈J =
∑
j∈J

cjxj

is a well-defined bounded operator from l2(A) into H with ‖U‖ ≤
√
D.

Proof. ”⇒”. Suppose that {xj}j∈J is a Bessel sequence with bound D. We first

show that U is well-defined.
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For arbitrary n > m, we have

‖
n∑

j=1

cjxj −
m∑

j=1

cjxj‖2 = ‖
n∑

j=m+1

cjxj‖2

= sup
‖x‖=1

‖〈
n∑

j=m+1

cjxj, x〉‖2

= sup
‖x‖=1

‖
n∑

j=m+1

cj〈xj, x〉‖2

≤ sup
‖x‖=1

‖
n∑

j=m+1

〈x, xj〉〈xj, x〉‖ · ‖
n∑

j=m+1

cjc
∗
j‖

≤ D‖
n∑

j=m+1

cjc
∗
j‖,

which implies that
∑

j∈J cjxj converges. Therefore U is well-defined.

To see the boundedness of U , we consider

‖U{cj}‖2 = sup
‖x‖=1

‖〈U{cj}, x〉‖2

= sup
‖x‖=1

‖
∑
j∈J

cj〈xj, x〉‖2

≤ sup
‖x‖=1

‖
∑
j∈J

〈x, xj〉〈xj, x〉‖ · ‖
∑
j∈J

cjc
∗
j‖

≤ D‖
∑
j∈J

cjc
∗
j‖ = D‖{cj}‖2.

This yields that ‖U‖ ≤
√
D.

”⇐”. For arbitrary x ∈ H and {cj}j∈J ∈ l2(A), we have

〈x, U{cj}〉 = 〈x,
∑
j∈J

cjxj〉 =
∑
j∈J

〈x, xj〉c∗j . (3.6)

By Lemma 3.10, we see that {〈x, xj〉}j∈J ∈ l2(A).

From (3.6), we get

〈x, U{cj}〉 = 〈{〈x, xj〉}, {cj}〉,
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which implies that U is adjointable, with U∗x = {〈x, xj〉}j∈J, and hence U is

bounded.

Note that

‖U∗x‖2 = ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖ ≤ D‖〈x, x〉‖ = D‖x‖2.

Consequently, ‖U‖ = ‖U∗‖ ≤
√
D, as desired.

For the case of frames in Hilbert C∗-modules we have the following two char-

acterizations.

Proposition 3.12. Let H be a finitely or countably generated Hilbert A-module

H over a unital C∗-algebra A. Suppose that {xj}j∈J is a sequence of H. Then

{xj}j∈J is a frame of H if and only if the operator U : l2(A) → H defined by

U{cj}j∈J =
∑
j∈J

cjxj

is a well-defined bounded operator from l2(A) onto H.

Proof. ”⇒”. Obvious.

”⇐”. By Proposition 3.11, {xj}j∈J is a Bessel sequence. Let D be the Bessel

bound of {xj}j∈J.

Note that for each x ∈ H, we have

x = UU∗(UU∗)−1x =
∑
j∈J

〈(UU∗)−1x, xj〉xj.
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Now

‖x‖4 = ‖〈x, x〉‖2 = ‖
∑
j∈J

〈(UU∗)−1x, xj〉〈xj, x〉‖2

≤ ‖
∑
j∈J

〈(UU∗)−1x, xj〉〈xj, (UU
∗)−1x〉‖ · ‖

∑
j∈J

〈x, xj〉〈xj, x〉‖

≤ D‖〈(UU∗)−1x, (UU∗)−1x〉‖ · ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖

= D‖(UU∗)−1x‖2 · ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖

≤ D‖(UU∗)−1‖2 · ‖x‖2 · ‖
∑
j∈J

〈x, xj〉〈xj, x〉‖,

which leads to the lower bound inequality of frame, that is

1

D‖(UU∗)−1‖2
‖x‖2 ≤ ‖

∑
j∈J

〈x, xj〉〈xj, x〉‖.

Proposition 3.13. Suppose that H is a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Let {xj}j∈J be a sequence of H, then

{xj}j∈J is a frame of H with bounds C and D if and only if

(1) span{xj : j ∈ J} = H;

(2) the operator U : l2(A) → H defined by

U{cj}j∈J =
∑
j∈J

cjxj

is a well-defined bounded operator from l2(A) into H and satisfies

√
C‖{cj}‖ ≤ ‖U{cj}‖ ≤

√
D‖{cj}‖, ∀{cj} ∈ (KerU)⊥. (3.7)

Proof. ”⇒”. Suppose first that {xj}j∈J is a frame. Let S be the frame operator

of {xj}j∈J. Then we have S = UU∗.

By Proposition 3.12, it is enough to show that

√
C‖{cj}‖ ≤ ‖U{cj}‖
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holds for all {cj} ∈ (KerU)⊥.

Since {xj}j∈J is a frame, it follows that Rang(U∗) is closed. Therefore we

have

(KerU)⊥ = Rang(U∗) = Rang(U∗).

As a sequence, (KerU)⊥ = {{〈x, xj〉}j∈J : x ∈ H}.

Now for any x ∈ H, we see that

‖
∑
j∈J

〈x, xj〉〈xj, x〉‖2 = ‖〈Sx, x〉‖2 ≤ ‖Sx‖2 · ‖x‖2

≤ ‖Sx‖2 · 1

C
‖
∑
j∈J

〈x, xj〉〈xj, x〉‖.

Therefore C‖
∑

j∈J〈x, xj〉〈xj, x〉‖ ≤ ‖Sx‖2 = ‖UU∗x‖ = ‖U{〈x, xj〉}‖2, as de-

sired.

”⇐”. To show that {xj}j∈J is a frame, by Proposition 3.12, it suffices to show

that Rang(U) = H.

Since span{xj : j ∈ J} ⊆ Rang(U), it only needs to prove that Rang(U) is

closed.

Suppose that {un} ⊆ Rang(U) and un → u as n → ∞. Then we can find

{vn} ⊆ (KerU)⊥ such that Uvn = un.

It follows from (3.7) that {vn} is a Cauchy sequence. Suppose that vn → v

as n → ∞. Therefore un = Uvn → Uv = u as n → ∞. This completes the

proof.

3.4 Removal of Elements from Frames

It is obvious that if we remove an element from a basis, then we must get a set

which is not a basis. But for frame this is not the case. Due to the redundancy

of frame if we remove an element from a frame we may get a new frame. For
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the removal of elements from frames in Hilbert spaces Christensen ([17]) gave the

following characterization.

Theorem 3.14. The removal of a vector fj from a frame {fk}∞k=1 for Hilbert

space H leaves either a frame or an incomplete set. More precisely,

(1) If 〈fj, S
−1fj〉 6= 1, then {fk}k 6=j is a frame for H;

(2) If 〈fj, S
−1fj〉 = 1, then {fk}k 6=j is incomplete;

where S is the corresponding frame operator.

We now introduce a lemma.

Lemma 3.15. Suppose that H is a finitely or countably generated Hilbert A-

module H over a unital C∗-algebra A. Let {xj}j∈J be a frame of H with analysis

operator T and frame operator S. Let x ∈ H and suppose that x =
∑

j∈J ajxj,

where aj ∈ A for each j ∈ J. Then∑
j∈J aja

∗
j =

∑
j∈J〈x, S−1xj〉〈S−1xj, x〉

+
∑

j∈J(aj − 〈x, S−1xj〉)(a∗j − 〈S−1xj, x〉).

Proof. For each j ∈ J we can write aj = (aj − 〈x, S−1xj〉) + 〈x, S−1xj〉.

Since {xj : j ∈ J} is a frame, we have x =
∑

j∈J〈x, S−1xj〉xj, and so∑
j∈J

(aj − 〈x, S−1xj〉)xj = 0,

i.e. {aj − 〈x, S−1xj〉}j∈J ∈ KerT ∗.

Note that {〈x, S−1xj〉}j∈J = {〈S−1x, xj〉}j∈J ∈ Rang(T ).

Since l2(A) = KerT ∗ ⊕ T (H), we see that

{〈x, S−1xj〉}j∈J ⊥ {aj − 〈x, S−1xj〉}j∈J,

which completes the proof.

We now generalize Theorem 3.14 to the situation of frames in Hilbert C∗-

modules.
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Theorem 3.16. Suppose that H is a finitely or countably generated Hilbert A-

module H over a unital C∗-algebra A. Let {xj}j∈J be a frame for H and 1A the

identity element of A. We have the following statements.

(1) if 1A − 〈xn, S
−1xn〉 is invertible in A, then {xj : j 6= n}j∈J is a frame for

H;

(2) if 1A − 〈xn, S
−1xn〉 is not invertible in A, then {xj : j 6= n}j∈J is not a

frame for H.

Proof. By the frame decomposition we have xn =
∑

j∈J〈xn, S
−1xj〉xj.

Define, for notational convenience, aj = 〈xn, S
−1xj〉, for each j ∈ J. Then

xn =
∑

j∈J ajxj.

(1) Suppose that 1A − 〈xn, S
−1xn〉 = 1A − an is invertible.

From xn =
∑

j∈J ajxj = anxn+
∑

j 6=n ajxj, we have xn = (1A−an)−1
∑

j 6=n ajxj.

Now for any x ∈ H, we see that

〈x, xn〉〈xn, x〉
= 〈x, (1A − an)−1

∑
j 6=n ajxj〉〈(1A − an)−1

∑
j 6=n ajxj, x〉

= 〈x,
∑

j 6=n ajxj〉((1A − an)−1)∗(1A − an)−1〈
∑

j 6=n ajxj, x〉
≤ ‖(1A − an)−1‖2〈x,

∑
j 6=n ajxj〉〈

∑
j 6=n ajxj, x〉)

= ‖(1A − an)−1‖2
∑

j 6=n(〈x, xj〉a∗j)
∑

j 6=n(aj〈xj, x〉)
≤ ‖(1A − an)−1‖2‖

∑
j 6=n aja

∗
j‖2
∑

j 6=n(〈x, xj〉〈xj, x〉).

Therefore

C〈x, x〉 ≤
∑

j∈J〈x, xj〉〈xj, x〉
= 〈x, xn〉〈xn, x〉+

∑
j 6=n〈x, xj〉〈xj, x〉

≤ (‖(1A − an)−1‖2‖
∑

j 6=n aja
∗
j‖2 + 1)

∑
j 6=n〈x, xj〉〈xj, x〉,

showing that {xj : j 6= n}j∈J satisfies the lower frame condition.

Obviously, {xj : j 6= n}j∈J also satisfies the upper frame condition.

(2) Suppose that 1A − 〈xn, S
−1xn〉 = 1A − an is not invertible in A.
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Assume on the contrary that {xj : j 6= n}j∈J is a frame, since S−
1
2 is invertible,

it follows that {S− 1
2xj : j 6= n}j∈J is also a frame with frame bound C̃ and D̃.

Then

C̃〈x, x〉 ≤
∑
j 6=n

〈x, S−
1
2xj〉〈S−

1
2xj, x〉 ≤ D̃〈x, x〉

holds for all x ∈ H.

In particular, for x = S−
1
2xn we have

C̃〈S−
1
2xn, S

− 1
2xn〉 ≤

∑
j 6=n

〈S−
1
2xn, S

− 1
2xj〉〈S−

1
2xj, S

− 1
2xn〉,

i.e. C̃〈xn, S
−1xn〉 ≤

∑
j 6=n〈xn, S

−1xj〉〈S−1xj, xn〉.

This implies that

C̃an ≤
∑
j 6=n

aja
∗
j .

From Lemma 3.15 we see that an = a2
n +

∑
j 6=n aja

∗
j .

Then we have C̃an ≤ an− a2
n, and so C̃t ≤ t− t2 holds for any t in σ(an), the

spectrum of an.

Since 1A − an is not invertible, it follows that 1 ∈ σ(an). Therefore C̃ · 1 ≤
1− 1 · 1 = 0, a contradiction. This completes the proof.
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CHAPTER 4

DUALS AND MODULAR RIESZ BASES

The main purpose of this chapter is to investigate the Riesz bases in Hilbert C∗-

modules. It is well-known that in Hilbert spaces every Riesz basis has a unique

dual which is also a Riesz basis. But in Hilbert C∗-modules, due to the zero-

divisors, not all Riesz bases have unique duals and not every dual is a Riesz

basis. We will present several such examples showing that the duals of Riesz

bases in Hilbert C∗-modules are much different and more complicated than the

Hilbert space cases. We give a complete characterization of all the dual sequences

for a Riesz basis, and a necessary and sufficient condition for a dual sequence of

a Riesz basis to be a Riesz basis.

4.1 Characterizations of Riesz Bases in Hilbert

C∗-modules

In this section we shall give a characterization of Riesz bases in Hilbert C∗-

modules which will be used in the latter part of this thesis.

Note that in Hilbert space case a frame is a Riesz basis if and only if its

analysis operator is surjective [37]. This is no longer true for Hilbert C∗-module

frames.

We first introduce a notation.
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Let Pn be the projection on l2(A) that maps each element to its n-th compo-

nent, i.e. Pnx = {uj}j∈J, where

uj =

{
xn if j = n,

0 if j 6= n,

for each x = {xj}j∈J ∈ l2(A).

We now prove the first main result of this chapter.

Theorem 4.1. Let {xj}j∈J be a frame of a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Then {xj}j∈J is a Riesz basis if and

only if xn 6= 0 and Pn(Rang(TX)) ⊆ Rang(TX) for all n ∈ J, where TX is the

analysis operator of {xj}j∈J.

Proof. Suppose first that {xj}j∈J is a Riesz basis.

Note that for any a = {aj}j∈J in l2(A), if
∑

j∈J ajxj = 0, then ajxj = 0 for

all j.

Therefore, if a ⊥ Rang(TX), then a ⊥ Pn(Rang(TX)). It follows that

Pn(Rang(TX)) ⊆ Rang(TX).

Suppose now that Pn(Rang(TX)) ⊆ Rang(TX) for each n. We want to show

that {xj}j∈J is a Riesz basis.

Suppose that
∑

j∈J ajxj = 0, where aj ∈ A.

Fix an n ∈ J, then PnTXx ∈ Rang(TX), so there exists yn ∈ H such that

TXyn = PnTXx.

Therefore we get

〈yn, xj〉 =

{
〈x, xn〉 if j = n,

0 if j 6= n.

Now for any x ∈ H we have

〈x, anxn〉 = 〈x, xn〉a∗n =
∑
j∈J

〈yn, xj〉a∗j

=
∑
j∈J

〈yn, ajxj〉 = 〈yn,
∑
j∈J

ajxj〉 = 0,
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which implies that anxn = 0.

Note that in Hilbert spaces, if {xj}j∈J is a Riesz basis and
∑

j∈J cjxj converges

for a sequence {cj} ⊆ C, then {cj} ∈ l2. But this is not the case in the setting of

Hilbert C∗-modules. We have the following example.

Example 4.2. Let l∞ be the set of all bounded complex-valued sequences. For

any u = {uj}j∈N and v = {vj}j∈N in l∞, we define

uv = {ujvj}j∈N, u∗ = {ūj}j∈N and ‖u‖ = max
j∈N

|uj|.

Then A = {l∞, ‖ · ‖} is a C∗-algebra.

Let H = c0 be the set of all sequences converging to zero. For any u, v ∈ H
we define

〈u, v〉 = uv∗ = {uj v̄j}j∈N.

Then H is a Hilbert A-module.

Obviously, {ej}j∈N is an orthonormal basis of H.

For each j we let cj =
√
jej+1.

Then cjej = 0 and so
∑∞

j=1 cjej = 0.

But
∑∞

j=1 cjc
∗
j =

∑∞
j=2 jej doesn’t converge in A. Thus {cj} /∈ l2(A).

Following the definition of Riesz bases in Hilbert C∗-modules, to test a se-

quence {xj}j∈J is a Riesz basis, we need to show that if
∑

j∈J cjxj = 0 for some

sequence {cj}j∈J ⊆ A, then cjxj = 0 for each j. We claim that we can restrict

the sequence {cj}j∈J in l2(A).

Corollary 4.3. Suppose that {xj}j∈J is a frame of H, then {xj}j∈J is a Riesz

basis if and only if

(1) xj 6= 0 for each j;

(2) if
∑

j∈J cjxj = 0 for some sequence {cj}j∈J ∈ l2(A), then cjxj = 0 for

each j.

Proof. See the proof of Theorem 4.1.
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4.2 Duals of Riesz Bases in Hilbert C∗-modules

The aim of this section is to have a detailed investigation on the dual sequences of

Riesz bases in Hilbert C∗-modules. Some of the results presented in this section

will be needed in proving Theorem 6.2.

We first introduce the following definition.

Definition 4.4. Suppose that H is a Hilbert A-module over a unital C∗-algebra

A. Let {xj}j∈J be a frame and {yj}j∈J a sequence of H. Then {yj}j∈J is said to

be a dual sequence of {xj}j∈J if

x =
∑
j∈J

〈x, yj〉xj (4.1)

holds for all x ∈ H, where the sum in (4.1) converges in norm. The pair {xj}j∈J

and {yj}j∈J are called a dual frame pair when {yj}j∈J is also a frame.

It should be mentioned that , contrasting to the Hilbert space situation, Riesz

bases of Hilbert C∗-modules may posses infinitely many dual frames due to the

existence of zero-divisors in the C∗-algebra of coefficients. The following three

simple examples show that the dual of Riesz bases of Hilbert C∗-modules are

quite different from and more complicated than the Hilbert space cases.

The first example shows that in Hilbert C∗-modules the dual Riesz basis of a

Riesz basis is not unique.

Example 4.5. Let A = M2×2(C) denote the C∗-algebra of all 2 × 2 complex

matrices. Let H = A and for any A,B ∈ H define

〈A,B〉 = AB∗.

Then H is a Hilbert A-module.

Let Ei,j be the 2 × 2 matrix with 1 in the (i, j)-th entry and 0 elsewhere,

where 1 ≤ i, j ≥ 2.

Then {E1,1, E2,2} is a Riesz basis of H and it is a dual of itself.

One can check that {E1,1 +E2,1, E2,2} is also a dual Riesz basis of {E1,1, E2,2}.
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It is well-known that if {xj}j∈J is a Riesz basis and {yj}j∈J is a dual sequence

of {xj}j∈J in a Hilbert space H, then {yj}j∈J is a Riesz basis which is the unique

dual of {xj}j∈J. The following example shows that this is not the case in Hilbert

C∗-modules.

Example 4.6. Suppose H and A are the same as in Example 4.2.

Note that {ej}j∈N is an orthonormal basis of H.

Now let xj = ej and

yj =

{
e1 if j = 1,

ej + jej−1 if j 6= 1.

One can verify that

x =
∑
j∈N

〈x, yj〉xj

holds for all x ∈ H, but {yj}j∈N is not a Riesz basis, even not a Bessel sequence.

Note that even the dual sequence of a Riesz basis in Hilbert C∗-modules is

a Bessel sequence, it still has the chance not to be a Riesz basis. We have the

following example.

Example 4.7. Suppose H and A are the same as in Example 4.2.

Now let xj = ej and

yj =

{
e1 + e2 if j = 1, 2,

ej if j 6= 1, 2.

Then {yj}j∈N is a Bessel sequence, and satisfies

x =
∑
j∈N

〈x, yj〉xj

for all x ∈ H.

Therefore, {yj}j∈N is a frame of H. But obviously {yj}j∈N is not a Riesz basis.

The following lemma will be needed in several places in the rest of this thesis

(in particular, it will be needed in the proof of Theorem 6.2).
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Lemma 4.8. Let {xj}j∈J be a frame of a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Suppose that {yj}j∈J and {zj}j∈J are

dual frames of {xj}j∈J with the property that either Rang(TY ) ⊆ Rang(TZ) or

Rang(TZ) ⊆ Rang(TY ), where TY and TZ are the analysis operators of {yj}j∈J

and {zj}j∈J respectively. Then yj = zj for all j ∈ J.

Proof. Suppose that Rang(TZ) ⊆ Rang(TY ). Then for each x ∈ H there exists

yx ∈ H such that

TY yx = TZx.

Applying T ∗X on the both sides we arrive at

yx = T ∗XTY yx = T ∗XTZx = x,

and so TY x = TZx for all x ∈ H.

Equivalently, ∑
j∈J

〈x, yj〉ej −
∑
j∈J

〈x, zj〉ej = 0,

i.e.
∑

j∈J〈x, yj − zj〉ej. Hence yj = zj for all j.

We now give a necessary and sufficient condition about the uniqueness of dual

frames in Hilbert C∗-modules. We also prove that if a frame has a unique dual

frame then it must be a Riesz basis.

Theorem 4.9. Suppose that H is a finitely or countably generated Hilbert A-

module over a unital C∗-algebra A. Let {xj}j∈J be a frame of H with analysis

operator TX , then the following statements are equivalent:

(1) {xj}j∈J has a unique dual frame;

(2) Rang(TX) = l2(A).

In case the equivalent conditions are satisfied, {xj}j∈J is a Riesz basis.

Proof. (2)⇒(1). Let {x∗j}j∈J be the canonical dual of {xj}j∈J with analysis oper-

ator TX∗ . Then x∗j = S−1
X xj, where SX is the frame operator of {xj}j∈J.
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Let {yj}j∈J be any dual frame of {xj}j∈J with analysis operator TY , then

Rang(TY ) ⊆ l2(A) = Rang(TX) = Rang(TX∗).

By Lemma 4.8, yj = x∗j for all j.

(1)⇒(2). Assume on the contrary that Rang(TX) 6= l2(A).

By Theorem 2.57, we have

l2(A) = Rang(TX)⊕KerT ∗X .

Let PX be the orthogonal projection from l2(A) onto Rang(TX), then

l2(A) = PX l
2(A)⊕ P⊥

X l
2(A).

Therefore P⊥
X l

2(A) = KerT ∗X 6= {0}.

Choose ej0 such that P⊥
X ej0 6= 0 and define an operator U : P⊥

X l
2(A) → H by

Uw = 〈w,P⊥
X ej0〉xj0 .

Then U is an adjointable linear operator.

Now let {x∗j}j∈J be the canonical dual of {xj}j∈J with upper bound DX∗ and

set yj = x∗j + UP⊥
X ej.

We have∑
j∈J

〈x, yj〉〈yj, x〉 =
∑
j∈J

〈x, x∗j + UP⊥
X ej〉〈x∗j + UP⊥

X ej, x〉

≤ 2(
∑
j∈J

〈x, x∗j〉〈x∗j , x〉+
∑
j∈J

〈P⊥
XU

∗x, ej〉〈ej, P
⊥
XU

∗x〉)

≤ 2(DX∗〈x, x〉+
∑
j∈J

〈P⊥
XU

∗x, P⊥
XU

∗x〉),

which implies that {yj}j∈J is a Bessel sequence.

Now for any x ∈ H,∑
j∈J

〈x, UP⊥
X ej〉xj = T ∗X

∑
j∈J

〈x, UP⊥
X ej〉ej = T ∗X

∑
j∈J

〈P⊥
XU

∗x, ej〉ej

= T ∗XP
⊥
XU

∗x = 0.
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This yields that x =
∑

j∈J〈x, yj〉xj for all x ∈ H. By Proposition 3.9, {yj}j∈J is

a dual frame of {xj}j∈J and is different from {x∗j}j∈J, which contradicts with the

uniqueness of the dual frame of {xj}j∈J.

To complete the proof it remains to prove that {xj}j∈J is a Riesz basis if one

of the equivalent conditions holds. Suppose now that Rang(TX) = l2(A).

If
∑

j∈J ajxj = 0 for aj ∈ A. Then

0 =
∑
j∈J

ajxj =
∑
j∈J

ajT
∗
Xej = T ∗X

∑
j∈J

ajej.

Therefore
∑

j∈J ajej = 0 as T ∗X is injective. Hence aj = 0 for all j.

Note that xj = T ∗Xej for each j ∈ J. It follows from the injectiveness of T ∗X

that xj 6= 0.

Remark 4.10. By the above theorem, Example 4.5 shows that, thought {E1,1, E2,2}
is a Riesz basis of H, the corresponding analysis operator is not surjective which

is different from the case in Hilbert spaces.

We also have another characterization on the uniqueness of dual frames of

Riesz bases in Hilbert C∗-modules.

Proposition 4.11. Let {xj}j∈J be a sequence of a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A, then {xj}j∈J is a Riesz basis

with unique dual frame if and only if

(1) span{xj : j ∈ J} = H;

(2) there exist C,D ≥ 0 such that

√
C‖{cj}‖ ≤ ‖

∑
j∈J

cjxj‖ ≤
√
D‖{cj}‖, ∀{cj}j∈J ∈ l2(A).

Proof. It follows from Theorem 4.9 and Proposition 3.13.

We now study the dual sequences of Riesz bases in Hilbert C∗-modules. The

following theorem is straightforward.
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Theorem 4.12. Suppose that {xj}j∈J is a Riesz basis of a finitely or countably

generated Hilbert A-module H over a unital C∗-algebra A. Let {yj}j∈J be a se-

quence of H. Then the following statements are equivalent.

(1) {yj}j∈J is a dual frame of {xj}j∈J;

(2) {yj}j∈J is a dual Bessel sequence of {xj}j∈J;

(3) for each j ∈ J, yj = S−1xj + zj, where S is the frame operator of {xj}j∈J,

and {zj}j∈J is a Bessel sequence of H satisfying 〈x, zj〉xj = 0 for all x ∈ H and

j ∈ J.

For the case of a dual sequence of a Riesz basis to be a Riesz basis, we have

the following characterization.

Theorem 4.13. Let {xj}j∈J be a Riesz basis and {yj}j∈J a sequence of a finitely

or countably generated Hilbert A-module H over a unital C∗-algebra A. Then

{yj}j∈J is a dual Riesz basis of {xj}j∈J if and only if for each j ∈ J, yj =

S−1xj + zj, where S is the frame operator of {xj}j∈J, and {zj}j∈J is a Bessel

sequence of H with the property that for each j ∈ J there exists bj ∈ A such that

zj = bjS
−1xj and 〈x, xj〉bjxj = 0 holds for all x ∈ H.

Proof. ”⇒”. Suppose that {yj}j∈J is a dual Riesz basis of {xj}j∈J and let zj =

yj − S−1xj.

Then it is easy to see that {zj}j∈J is a Bessel sequence of H.

Now fix an n ∈ J.

From yn =
∑

j∈J〈yn, xj〉yj we can infer that yn = 〈yn, xn〉yn, i.e.

S−1xn + zn = 〈S−1xn + zn, xn〉(S−1xn + zn).

Consequently, we have

zn = 〈zn, xn〉S−1xn + 〈S−1xn, xn〉zn + 〈zn, xn〉zn.

To show that 〈S−1xn, xn〉zn + 〈zn, xn〉zn = 0, it suffices to show that

〈S−1xn, xn〉〈zn, x〉+ 〈zn, xn〉〈zn, x〉 = 0
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holds for all x ∈ H.

Note that

x =
∑
j∈J

〈x, yj〉xj =
∑
j∈J

〈x, S−1xj〉xj +
∑
j∈J

〈x, xj〉xj = x+
∑
j∈J

〈x, zj〉xj,

which implies that
∑

j∈J〈x, zj〉xj = 0 and so 〈x, zj〉xj = 0 for all x ∈ H and j ∈ J.

Particularly, we have 〈x, zn〉xn = 0 for all x ∈ H. This yields that

〈x, zn〉〈xn, zn〉 = 0 and 〈x, zn〉〈xn, S
−1xn〉 = 0.

Equivalently, 〈zn, xn〉〈zn, x〉 = 0 and 〈S−1xn, xn〉〈zn, x〉 = 0.

Therefore zn = bnS
−1xn, where bn = 〈zn, xn〉.

From 〈xn, zn〉xn = 0, we have

〈y, xn〉〈xn, zn〉〈xn, x〉 = 0

for all x, y ∈ H, which is equivalent to 〈x, xn〉〈zn, xn〉〈xn, y〉 = 0, this implies that

〈x, xn〉bnxn = 〈x, xn〉〈zn, xn〉xn = 0.

”⇐”. Suppose now that for each j ∈ J there exists bj ∈ A such that zj =

bjS
−1xj and 〈x, xj〉bjxj = 0 holds for all x ∈ H. Then for all x, y ∈ H we have

〈x, xj〉bj〈xj, y〉 = 0.

Equivalently,

〈y, xj〉b∗j〈xj, x〉 = 0.

This implies that 〈y, xj〉b∗jxj = 0 for all y ∈ H.

Now for arbitrary x ∈ H,∑
j∈J

〈x, yj〉xj =
∑
j∈J

〈x, S−1xj〉xj +
∑
j∈J

〈x, zj〉xj

= x+
∑
j∈J

〈x, bjS−1xj〉xj

= x+
∑
j∈J

〈x, S−1xj〉b∗jxj

= x+
∑
j∈J

〈S−1x, xj〉b∗jxj

= x,
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which implies that {yj}j∈J is a dual sequence of {xj}j∈J.

One can easily see that {yj}j∈J is a dual frame of {xj}j∈J by Proposition 3.9.

To complete the proof, we need to show that {yj}j∈J is a Riesz basis of H.

Suppose that
∑

j∈J ajyj = 0, then we have

0 =
∑
j∈J

aj(S
−1xj + bjS

−1xj) =
∑
j∈J

aj(1 + bi)S
−1xj.

Therefore aj(1 + bj)S
−1xj = 0, i.e. ajyj = 0 for all j.

We now show that yj 6= 0 for each j ∈ J.

Assume on the contrary that yn = 0 for some n ∈ J. Then zn = −S−1xn. It

follows that

0 = 〈x, xn〉bnxn = 〈x, xn〉Szn = −〈x, xn〉xn

holds for all x ∈ H.

In particular, letting x = S−1xn, we have 0 = −〈S−1xn, xn〉xn = −xn, and so

xn = 0, a contradiction. This completes the proof.

Corollary 4.14. Suppose that H is a finitely or countably generated Hilbert A-

module over a unital C∗-algebra A. If A is commutative, then every Riesz basis

of H has a unique dual Riesz basis.

Proof. Choose an arbitrary Riesz basis {xj}j∈J ofH. Suppose that {S−1xj+zj}j∈J

is a dual Riesz basis of {xj}j∈J, where S is the frame operator of {xj}j∈J.

Then by Theorem 4.13, for each j ∈ J there exists bj ∈ A such that zj =

bjS
−1xj and 〈x, xj〉bjxj = 0 holds for all x ∈ H.

Since A is commutative, we have bj〈x, xj〉xj = 0 for all x ∈ H and j ∈ J.

Let x = S−1xj. We have

0 = bj〈S−1xj, xj〉xj = bj〈xj, S
−1xj〉xj = bjxj,

which yields that zj = bjS
−1xj = 0.
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Note that under that conditions of Corollary 4.14, though a Riesz basis has a

unique dual Riesz basis, it may have many dual frames. We have the following

example.

Example 4.15. Let A = D2×2(C) denote the C∗-algebra of all 2 × 2 complex

diagonal matrices. Let H = A and for any A,B ∈ H define

〈A,B〉 = AB∗.

Then H is a Hilbert A-module.

It is obvious that A is commutative.

Let Ei,j be the 2 × 2 matrix with 1 in the (i, j)-th entry and 0 elsewhere,

where 1 ≤ i, j ≤ 2.

Then {E1,1, E2,2} is a Riesz basis of H, and so it has a unique dual Riesz basis

which is itself.

But the dual frame of {E1,1, E2,2} is not unique. For example, one can verify

that {E1,1+αE2,2, βE1,1+E2,2} is also a dual frame of {E1,1, E2,2} for any α, β ∈ C.

The following example shows that the converse of Corollary 4.14 is not true,

namely, if every Riesz basis of a Hilbert A-module H has a unique dual Riesz

basis, A is not necessarily commutative.

Example 4.16. Let

H = {


a 0 0

0 0 0

0 0 0

 : ∀a ∈ C}

and

A = {


a 0 0

0 b c

0 d e

 : ∀a, b, c, d, e ∈ C}.

For any A,B ∈ H define

〈A,B〉 = AB∗.
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Then H is a A-module.

Note that A is not commutative.

Let

Eα =


α 0 0

0 0 0

0 0 0

 .

Then {Eα} is a Riesz basis of H.

It is easy to see that any Riesz basis of H has the form of {Eα} for some

nonzero α ∈ C. And one can also check that every dual Riesz basis of {Eα} for

each nonzero α is unique.

We now introduce a notation. For a Hilbert A-module H, let

CA(H) = {a ∈ A : abx = bax,∀b ∈ A, x ∈ H}.

To complete this section we pose a conjecture as follows.

Conjecture. Suppose that H is a finitely or countably generated Hilbert

A-module over a unital C∗-algebra A. Then every Riesz basis of H has a unique

dual Riesz basis if and only if A = CA(H).
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CHAPTER 5

STRUCTURED MODULAR FRAMES

The purpose of this chapter is to focus on structured frames in Hilbert C∗-

modules. More precisely, we work on two closely related issues: frame vector

parameterizations and Parseval frame approximations. In the case that the un-

derlying C∗-algebra is a commutative W ∗-algebra, we prove that the set of the

complete Parseval frame vectors for a unitary group can be parameterized by the

set of all the unitary operators in the double commutant of the unitary group.

Similar result holds for the set of all the complete frame generators where the

unitary operators are replaced by invertible and adjointable operators. Conse-

quently, the set of all the complete Parseval frame vectors is path-connected.

We also prove the existence and uniqueness of the best Parseval multi-frame ap-

proximations for multi-frame generators of unitary groups on Hilbert C∗-modules

when the underlying C∗-algebra is commutative.

5.1 Modular Frame Vector Parameterizations

The aim of this section is to investigate the parameterizations of frame vectors

in Hilbert C∗-modules.

Let’s first introduce a few more notation. Let S ⊆ EndA(H), we denote its

commutant {A ∈ EndA(H) : AS = SA, S ∈ S} by S ′. Let x ∈ H be a nonzero

vector, the local commutant Cx(S) of S at x is defined by

Cx(S) = {A ∈ EndA(H) : ASx = SAx, S ∈ S}.
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A unitary system U on H is a set of unitary operators acting on H which

contains the identity operator.

A vector ψ in H is called a complete frame vector (resp. complete Parseval

frame vector, complete Riesz basis vector, Bessel sequence vector) for a unitary

system U on H if Uψ = {Uψ : U ∈ U} is a frame (resp. Parseval frame, Riesz

basis, Bessel sequence) for H. If Uψ is an orthonormal basis of H, then ψ is

called a complete wandering vector for U .

For a unitary system U on H, let l2U(A) be the Hilbert A-module defined by

l2U(A) = {{aU}U∈U ⊆ A :
∑
U∈U

aUa
∗
U converges in ‖ · ‖}.

Let {eU}U denote the standard orthonormal basis of l2U(A), where eU takes value

1A at U and 0A at everywhere else. For the case that U is a unitary group on

H, we have the left and right regular representation for each U ∈ U which are

defined by

LUeV = eUV and RUeV = eV U .

Note that L−1
U = L∗U = LU∗ and R−1

U = R∗
U = RU∗ .

The following two propositions can be viewed as the analogue of the corre-

sponding results for Hilbert space frames obtained in [19].

Proposition 5.1. Let U be a unitary system on a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A. Suppose that H has orthonormal

bases and η is a complete wandering vector for U . For ξ ∈ H, we have

(1) ξ is a complete wandering vector for U if and only if there exists a unitary

T ∈ Cη(U) such that ξ = Tη.

(2) ξ is a complete Riesz basis vector for U if and only if there exists an

invertible and adjointable operator T ∈ Cη(U) such that ξ = Tη.

(3) ξ is a complete Parseval frame vector for U if and only if there exists a

co-isometry T ∈ Cη(U) such that ξ = Tη.
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(4) ξ is a complete frame vector for U if and only if there exists an adjointable

operator T ∈ Cη(U) with C〈x, x〉 ≤ 〈T ∗x, T ∗x〉 for some C > 0 and any x ∈ H
such that ξ = Tη.

(5) ξ is a complete Bessel sequence vector for U if and only if there exists an

adjointable operator T ∈ Cη(U) such that ξ = Tη.

Proof. We will prove (3). And others go similarly.

Suppose that ξ = Tη for some unitary operator T ∈ Cη(U). Then for any

x ∈ H, we have

〈x, x〉 = 〈T ∗x, T ∗x〉 =
∑
U∈U

〈T ∗x, Uη〉〈Uη, T ∗x〉

=
∑
U∈U

〈x, TUη〉〈TUη, x〉

=
∑
U∈U

〈x, UTη〉〈UTη, x〉

=
∑
U∈U

〈x, Uξ〉〈Uξ, x〉,

which implies that ξ is a complete Parseval frame vector for U .

We now assume that ξ is a complete Parseval frame vector for U .

Define two operators Tη and Tξ from H to l2U(A) respectively by

Tηx =
∑
U∈U

〈x, Uη〉eU and Tξx =
∑
U∈U

〈x, Uξ〉eU .

It is easy to check that both Tη and Tξ are well-defined and adjointable.

Let T = T ∗ξ Tη. Then for any x ∈ H, we have

Tx =
∑
U∈U

〈x, Uη〉Uξ

and

T ∗x =
∑
U∈U

〈x, Uξ〉Uη.

We now show that T is a co-isometry.
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Indeed, for any x ∈ H, we see that

〈T ∗x, T ∗x〉 = 〈
∑
U∈U

〈x, Uξ〉Uη,
∑
U∈U

〈x, Uξ〉Uη〉

=
∑
U∈U

〈x, Uξ〉〈Uξ, x〉 = 〈x, x〉.

To complete the proof, it remains to prove that ξ = Tη and T ∈ Cη(U).

For any V and U in U ,

〈V ξ, TUη〉 = 〈V ξ,
∑
W∈U

〈Uη,Wη〉Wξ〉

=
∑
W∈U

〈V ξ,Wξ〉〈Wη,Uη〉

= 〈V ξ, Uξ〉,

this implies that TUη = Uξ. Particularly, we have Tη = ξ. And so TUη = Uξ =

UTη, as desired.

Note that if U is a unitary system which is not a group, and if U has a complete

wandering vector, then U is not even a semigroup. We have the following result.

Proposition 5.2. Let S be a unital semigroup of unitaries on a finitely or count-

ably generated Hilbert A-module H over a unital C∗-algebra A. Suppose that S
has a complete wandering vector. Then S is a group.

Proof. Let η be a complete wandering vector for S and U ∈ U . For any x ∈ H,

we have ∑
V ∈U

〈x, V η〉〈V η, x〉 = 〈x, x〉 = 〈U∗x, U∗x〉

=
∑
V ∈S

〈U∗x, V η〉〈V η, U∗x〉

=
∑
V ∈S

〈x, UV η〉〈UV η, x〉.

Assume on the contrary that S is not a group, then there exists U0 ∈ S such

that U−1
0 /∈ S. Then I /∈ U0S. Since U0S ⊆ S, it follows from (5.1) that

〈x, η〉〈η, x〉 = 0, ∀x ∈ H.
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In particular, if x = η, we have

〈η, η〉〈η, η〉 = 0

and hence 〈η, η〉 = 0, therefore η = 0, a contradiction.

To prove our first main result, we need the following:

Lemma 5.3. Let G be a unitary group on a Hilbert A-module over a commutative

unital C∗-algebra A, then

M = N ′ = {RU : U ∈ G}′ and N = M′ = {LU : U ∈ G}′,

where M = {LU : U ∈ G}′′ and N = {RU : U ∈ G}′′.

Proof. Note that RULV = LVRU holds for any U, V ∈ G. Therefore to prove this

lemma it suffices to show that TS = ST for arbitrary T ∈M′ and S ∈ N ′.

Suppose that

TeI =
∑
U∈G

aUeU and SeI =
∑
U∈G

bUeU

for some aU , bU ∈ A.

Now for any V ∈ G, on one hand, we have

STeV = STLV eI = SLV TeI

= SLV (
∑
U∈G

aUeU) = S(
∑
U∈G

aUeV U)

= S(
∑
U∈G

aURV UeI) =
∑
U∈G

aURV USeI

=
∑
U∈G

aURV U(
∑
W∈G

bW eW )

=
∑

U,W∈G

aUbW eWV U .
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On the other hand

TSeV = TSRV eI = TRV SeI

= TRV (
∑
W∈G

bW eW ) = T (
∑
W∈G

bW eWV )

= T (
∑
W∈G

bWLWV eI) =
∑
W∈G

bWLWV TeI

=
∑
W∈G

bWLWV (
∑
U∈G

aUeU)

=
∑

U,W∈G

bWaUeWV U .

Since A is commutative, it follows that STeV = TSeV , and so ST = TS.

We now define a natural conjugate A-linear isomorphism π from M onto

M′ = N by

π(A)BeI = BA∗eI , ∀A,B ∈M.

In particular, π(A)eI = A∗eI .

Now we are in a position to prove the parameterization of complete Parseval

frames for unitary groups.

Theorem 5.4. Let G be a unitary group on a finitely or countably generated

Hilbert A-module H over a commutative unital W ∗-algebra A such that l2G(A) is

self-dual. Suppose that η ∈ H be a complete Parseval frame vector for G. For ξ

in H we have

(1) ξ is a complete Parseval frame vector for G if and only if there exists a

unitary operator A ∈ G ′′ such that ξ = Aη.

(2) ξ is a complete frame vector for G if and only if there exists an invertible

and adjointable operator A ∈ G ′′ such that ξ = Aη.

(3) ξ is a complete Bessel sequence vector for G if and only if there exists an

adjointable operator A ∈ G ′′ such that ξ = Aη.

Proof. We will prove (1). The proof of (2) and (3) is similar and we leave it to

the interested readers.
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Let M = {LU : U ∈ G}′′. As η is a complete Parseval frame vector for G, we

have the corresponding analysis operator Tη which is given by

Tηx =
∑
U∈G

〈x, Uη〉eU .

From the proof of Theorem 6.1, we know that Tη is an isometry with closed range

and satisfies

TηU = LUTη and Tηη = PeI ,

where P is the orthogonal projection from l2G(A) onto the range of Tη, and we

also have P ∈M′. Note that G is unitarily equivalent to the group {LU , U ∈ G}.
Therefore, to prove this theorem is equivalent to prove the theorem for the case

that G̃ = {LU |Rang(P ), U ∈ G} and η̃ = PeI .

Sufficiency. Suppose that we have a unitary operator A ∈ G̃ ′′ such that

ξ̃ = Aη̃.

We now show that Aη̃ is a complete Parseval frame vector for G̃. For any

x ∈ Rang(P ) = Rang(Tη), we have∑
Ũ∈G̃

〈x, ŨAη̃〉〈ŨAη̃, x〉 =
∑
U∈G

〈x, LUPAη̃〉〈LUPAη̃, x〉

=
∑
U∈G

〈x, LUPAPeI〉〈LUPAPeI , x〉

=
∑
U∈G

〈x, LUPAeI〉〈LUPAeI , x〉

=
∑
U∈G

〈x, PLUAeI〉〈PLUAeI , x〉

=
∑
U∈G

〈Px, LUAeI〉〈LUAeI , Px〉

=
∑
U∈G

〈x, LUAeI〉〈LUAeI , x〉

=
∑
U∈G

〈x, π(A∗)LUeI〉〈π(A∗)LUeI , x〉

=
∑
U∈G

〈(π(A∗))∗x, eU〉〈eU , (π(A∗))∗x〉

= 〈(π(A∗))∗x, (π(A∗))∗x〉 = 〈x, x〉,
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which means that Aη̃ is a complete Parseval frame vector for G̃.

Necessity. Let ξ̃ ∈ Rang(P ) be a complete Parseval frame vector for G̃. We

want to find a unitary operator A ∈ G̃ ′′ such that ξ̃ = Aη̃.

To this aim, we first define an operator B : l2G(A) → l2G(A) by

eU 7−→ LUξ, U ∈ G.

One can check thatB is an adjointable operator andB∗eV =
∑

W∈G〈LW−1LV η̃, ξ̃〉eW

for any V ∈ G.

Now for any U, V ∈ G, we see that

〈(BB∗ − P )eU , eV 〉

= 〈
∑
W∈G

〈LW−1LU η̃, ξ̃〉eW ,
∑
S∈G

〈LS−1LV η̃, ξ̃〉eS〉 − 〈TηUη, eV 〉

=
∑
W∈G

〈LW−1LU η̃, ξ̃〉〈ξ̃, LW−1LV η̃〉 − 〈
∑
W∈G

〈Uη,Wη〉eW , eV 〉

=
∑
W∈G

〈LU η̃, LW ξ̃〉〈LW ξ̃, LV η̃〉 − 〈Uη, V η〉

= 〈LU η̃, LV η̃〉 − 〈Uη, V η〉

= 〈LUPeI , LV PeI〉 − 〈Uη, V η〉

= 〈LUTηη, LV Tηη〉 − 〈Uη, V η〉

= 〈TηUη, TηV η〉 − 〈Uη, V η〉 = 0,

this lead to the fact that P = BB∗.

From

BLUeV = BeUV = LUV ξ̃ = LULV ξ̃ = LUBeV ,

we see that B ∈M′. Hence B is a partial isometry in M′.

Let Q = B∗B, then P and Q are equivalent projections in M′.

Since l2G(A) is self-dual, by [49], End∗A(l2G(A)) is a W ∗-algebra.

Let (End∗A(l2G(A)))∗ be its predual. One can check that M and M′ are

σ(End∗A(l2G(A)), (End∗A(l2G(A)))∗)-closed in End∗A(l2G(A)), and so both M and

M′ are W ∗-algebras (see [52]).
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Claim. M and M′ are finite W ∗-algebras.

We now define φ : M→A by

φ(A) = 〈AeI , eI〉, ∀A ∈M.

We want to show that φ is a faithful A-value trace for M.

Since span{LUeI , U ∈ G} = l2G(A), for any A,B ∈M, we have

AeI = lim
n
AneI and BeI = lim

n
BneI ,

where

AneI =
kn∑
i=1

a
(n)
i LVi

(n)eI and BneI =
ln∑

j=1

b
(n)
j LWj

(n)eI

for some a
(n)
i , b

(n)
j ∈ A and Vi

(n),Wj
(n) ∈ G.

Then

φ(AB) = 〈ABeI , eI〉 = lim
m

lim
n
〈

lm∑
j=1

kn∑
i=1

b
(m)
j a

(n)
i LWj

(m)LVi
(n)eI , eI〉.

While

φ(BA) = lim
n

lim
m
〈

kn∑
i=1

lm∑
j=1

a
(n)
i b

(m)
j LVi

(n)LWj
(m)eI , eI〉.

Note that

〈LWj
(m)LVi

(n)eI , eI〉 = 〈LVi
(n)LWj

(m)eI , eI〉.

Therefore φ(AB) = φ(BA).

If A ∈M is positive and φ(A) = 0, then

〈A
1
2 eI , A

1
2 eI〉 = 〈AeI , eI〉 = φ(A) = 0.

Thus A
1
2 eI = 0.

Now for any U ∈ G, we have

A
1
2 eU = A

1
2RUeI = RUA

1
2 eI = 0.
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Therefore A
1
2 = 0, and so A = 0. Similarly we can prove that M′ is also finite.

It follows from Corollary 2.44 that I−P and I−Q are equivalent projections

in M′. Therefore there exists a partial isometry C ∈M′ such that CC∗ = I −P
and C∗C = I −Q.

Let T = B + C. Then T is a unitary operator in M′, and so A = (π−1(T ))∗

is a unitary operator in M.

In order to complete the proof it remains to prove that Aη̃ = ξ̃.

In fact,

Aη̃ = (π−1(T ))∗PeI = P (π−1(T ))∗eI

= Pπ(π−1(T ))eI = PTeI

= P (B + C)eI = PBeI + PCeI

= P ξ̃ = ξ̃,

which completes the proof.

We now can easily have the following:

Corollary 5.5. Let G be a unitary group on a finitely or countably generated

Hilbert A-module H over a commutative unital W ∗-algebra A such that l2G(A)

is self-dual, then the set of all complete Parseval frame vectors for G is path-

connected.

5.2 Parseval Frame Approximations

Many interesting frames are generated by some (usually finite number of) ”win-

dow” functions under the action of a collection of unitary operators. For example,

Gabor frames and wavelet frames are of this kind.

Definition 5.6. Let U be a unitary system on a Hilbert C∗-module H. Φ =

(φ1, . . . , φN), where φj ∈ H for all j, is called a multi-frame generator of length

N for U if {Uφj : U ∈ U , 1 ≤ j ≤ N} is a frame.
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Definition 5.7. Let Φ = (φ1, . . . , φN) be a multi-frame generator for a unitary

system U on a Hilbert C∗-module H. Then a Parseval multi-frame generator

Ψ = (ψ1, . . . , ψN) for U is called a best Parseval multi-frame approximation for

Φ if the inequality

N∑
k=1

〈φk − ψk, φk − ψk〉 ≤
N∑

k=1

〈φk − ξk, φk − ξk〉

is valid for all the Parseval multi-frame generator Ξ = (ξ1, . . . , ξN) for U .

Let Φ = {φ1, φ2, . . . , φN} be a multi-frame generator for a unitary system U
on a finitely or countably generated Hilbert A-module H over a unital C∗-algebra

A. We use TΦ to denote the analysis operator from H to l2U×{1,2,...,N}(A) defined

by

TΦx =
N∑

j=1

∑
U∈U

〈x, Uφj〉e(U,j), ∀x ∈ H,

where {e(U,j) : U ∈ U , j = 1, 2, . . . , N} is the standard orthonormal basis for

l2U×{1,2,...,N}(A).

Note that TΦ is adjointable and its adjoint operator satisfying

T ∗Φe(U,j) = Uφj, U ∈ U , j = 1, 2, . . . , N.

Lemma 5.8. Let G be a unitary group on a Hilbert A-module H over a commuta-

tive C∗-algebra A. Suppose that Φ = {φ1, φ2, . . . , φN} and Ψ = {ψ1, ψ2, . . . , ψN}
be two multi-frame generators for G, then

N∑
k=1

〈φk, φk〉 =
N∑

k=1

〈ψk, ψk〉.
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Proof. We compute

N∑
k=1

〈φk, φk〉 =
N∑

k=1

N∑
j=1

∑
U∈G

〈φk, Uψj〉〈Uψj, φk〉

=
N∑

k=1

N∑
j=1

∑
U∈G

〈U∗φk, ψj〉〈ψj, U
∗φk〉

=
N∑

j=1

N∑
k=1

∑
U∈G

〈ψj, U
∗φk〉〈U∗φk, ψj〉

=
N∑

j=1

〈ψj, ψj〉.

Theorem 5.9. Let G be a unitary group on a finitely or countably generated

Hilbert A-module H over a commutative unital C∗-algebra A. Suppose that Φ =

{φ1, φ2, . . . , φN} is a multi-frame generator for G. Then S
1
2 Φ is the unique best

Parseval multi-frame approximation for Φ, where S is the frame operator for the

multi-frame {Uφj : j = 1, . . . , N, U ∈ G}.

Proof. We first show that S ∈ G ′.

For arbitrary V ∈ G and x ∈ H we have

SV x =
N∑

k=1

∑
U∈G

〈V x, Uφk〉Uφk

=
N∑

k=1

∑
U∈G

〈x, V ∗Uφk〉Uφk

= V (
N∑

k=1

∑
U∈G

〈x, V ∗Uφk〉V ∗Uφk)

= V (
N∑

k=1

∑
U∈G

〈x, Uφk〉Uφk)

= V Sx.

This shows that S ∈ G ′.
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Since End∗A(H) is a C∗-algebra, by the spectral decomposition for positive

elements in C∗-algebra, we can infer that S−
1
2 , S−

1
4 ∈ G ′.

Therefore {S− 1
2φ1, S

− 1
2φ2, . . . , S

− 1
2φN} is a complete Parseval multi-frame

generator for G.

Let Ψ = {ψ1, ψ2, . . . , ψN} be any Parseval multi-frame generator for G. We

claim that
N∑

k=1

〈T
S−

1
2 Φ
S−

1
4φk, TΨS

− 1
4φk〉 =

N∑
k=1

〈ψk, φk〉,

where T
S−

1
2 Φ

and TΨ are the analysis operators with respect to the Parseval

multi-frame generators S−
1
2 Φ and Ψ respectively.

We compute

N∑
k=1

〈T
S−

1
2 Φ
S−

1
4φk, TΨS

− 1
4φk〉

=
N∑

k=1

〈
N∑

j=1

∑
U∈G

〈S−
1
4φk, US

− 1
2φj〉e(U,j),

N∑
i=1

∑
V ∈G

〈S−
1
4φk, V ψi〉e(V,i)〉

=
N∑

k=1

N∑
j=1

∑
U∈G

〈S−
1
4φk, US

− 1
2φj〉〈Uψj, S

− 1
4φk〉

=
N∑

k=1

N∑
j=1

∑
U∈G

〈Uψj, S
− 1

4φk〉〈S−
1
4φk, US

− 1
2φj〉

=
N∑

j=1

N∑
k=1

∑
U∈G

〈S
1
4ψj, U

∗S−
1
2φk〉〈U∗S−

1
2φk, S

− 1
4φj〉

=
N∑

j=1

〈S
1
4ψj, S

− 1
4φj〉 =

N∑
j=1

〈ψj, φj〉

We now want to prove that S
1
2 Φ is a best Parseval multi–frame approximation

for Φ. We need to show that

N∑
k=1

〈ψk − φk, ψk − φk〉 ≥
N∑

k=1

〈S−
1
2φk − φk, S

− 1
2φk − φk〉.
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By Lemma 5.8, it suffices to prove that

N∑
k=1

(〈S−
1
2φk, φk〉+ 〈φk, S

− 1
2φk)− 〈ψk, φk〉 − 〈φk, ψk〉) ≥ 0.

In fact, we have

N∑
k=1

(〈S−
1
2φk, φk〉+ 〈φk, S

− 1
2φk〉 − 〈ψk, φk〉 − 〈φk, ψk〉)

=
N∑

k=1

(〈S−
1
4φk, S

− 1
4φk〉+ 〈S−

1
4φk, S

− 1
4φk)〉

−〈T
S−

1
2 Φ
S−

1
4φk, TΨS

− 1
4φk〉 − 〈TΨS

− 1
4φk, TS−

1
2 Φ
S−

1
4φk〉)

=
N∑

k=1

(〈T
S−

1
2 Φ
S−

1
4φk, TS−

1
2 Φ
S−

1
4φk〉+ 〈TΨS

− 1
4φk, TΨS

− 1
4φk〉

−〈T
S−

1
2 Φ
S−

1
4φk, TΨS

− 1
4φk〉 − 〈TΨS

− 1
4φk, TS−

1
2 Φ
S−

1
4φk〉)

=
N∑

k=1

〈(T
S−

1
2 Φ
− TΨ)S−

1
4φk, (TS−

1
2 Φ
− TΨ)S−

1
4φk〉 ≥ 0.

This implies that S−
1
2 Φ is a best Parseval multi-frame approximation for Φ.

For the uniqueness, assume that Ξ = {ξ1, ξ2, . . . , ξN} be another best Parseval

multi-frame approximation for Φ. Then we have

N∑
k=1

〈ξk − φk, ξk − φk〉 =
N∑

k=1

〈S−
1
2φk − φk, S

− 1
2φk − φk〉. (5.1)

By Lemma 5.8, we also have

N∑
k=1

〈ξk, ξk〉 =
N∑

k=1

〈S−
1
2φk, S

− 1
2φk〉. (5.2)

Identities (5.1) and (5.2) imply that

N∑
k=1

(〈ξk, φk〉+ 〈φk, ξk〉) =
∑
k=1

(〈S−
1
2φk, φk〉+ 〈φk, S

− 1
2φk〉)

= 2
N∑

k=1

〈S−
1
4φk, S

− 1
4φk〉.
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We claim that

N∑
k=1

〈S
1
4 ξk, S

1
4 ξk〉 =

N∑
k=1

〈S−
1
4φk, S

− 1
4φk〉.

In fact,

N∑
k=1

〈S
1
4 ξk, S

1
4 ξk〉

=
N∑

k=1

N∑
j=1

∑
U∈G

〈S
1
4 ξk, US

− 1
2φj〉〈US−

1
2φj, S

1
4 ξk〉

=
N∑

j=1

N∑
k=1

∑
U∈G

〈S−
1
4φj, U

∗ξk〉〈U∗ξk, S
− 1

4φj〉

=
N∑

j=1

〈S−
1
4φj, S

− 1
4φj〉.

Then we have

N∑
k=1

〈S
1
4 ξk − S−

1
4φk, S

1
4 ξk − S−

1
4φk〉

=
N∑

k=1

(〈S
1
4 ξk, S

1
4 ξk〉 − 〈S

1
4 ξk, S

− 1
4φk〉

−〈S−
1
4φk, S

1
4 ξk〉+ 〈S−

1
4φk, S

− 1
4φk〉)

=
N∑

k=1

(2〈S−
1
4φk, S

− 1
4φk〉 − 〈ξk, φk〉 − 〈φk, ξk〉)

= 0.

This implies that

S
1
4 ξk = S−

1
4φk, k = 1, 2, . . . , N.

Therefore

ξk = S−
1
2φk, k = 1, 2, . . . , N.

i.e. Ξ = S−
1
2 Φ, as expected.

To complete this chapter we ask
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Problem 5.10. Does Theorem 5.9 hold when the underlying C∗-algebra A is

non-commutative?
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CHAPTER 6

DILATIONS OF FRAMES IN HILBERT C∗-MODULES

In this chapter we investigate the dilation of frames in Hilbert C∗-modules. Our

first result shows that a complete Parseval frame vector for a unitary group on

Hilbert C∗-module can be dilated to a complete wandering vector. For any dual

frame pair in any Hilbert C∗-module, we prove that the pair are orthogonal

compressions of a Riesz basis and its canonical dual basis for some larger Hilbert

C∗-module. In other words, the dilation theorem for Hilbert space dual frame

pairs is still valid for Hilbert C∗-module dual frame pairs. This dilation property

remains valid even when restricted to structured frames.

6.1 Dilation of Parseval Frame Vectors

It was proved in ([26]) that each Parseval frame of Hilbert C∗-modules can be

dilated to an orthonormal basis. It is natural to ask whether a complete Parse-

val frame vector for a unitary group on Hilbert C∗-module can be dilated to a

complete wandering vector. We answer this question in the following theorem.

Theorem 6.1. Let G be a unitary group on a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A. Suppose that η is a complete

Parseval frame vector for G. Then there exists a Hilbert A-module H̃ ⊇ H and

a unitary group G̃ on H̃ such that G̃ has complete wandering vectors in H̃, H is

an invariant subspace of G̃ such that G̃|H = G, and the map G 7→ G|H is a group

isomorphism from G̃ onto G.
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Proof. Let H̃ = l2G(A).

Now for each U ∈ G, let LU be the left regular representation defined by

LUeV = eUV , ∀V ∈ G,

where eV is the characteristic function at the single point set {V }.

Let G̃ = {LU , U ∈ G}. It is easy to check that G̃ is a unitary group isomorphic

to G.

We now define an operator T : H → H̃ by

T (x) =
∑
U∈G

〈x, Uη〉eU .

One can check that T is an adjointable isometry. Also it is routine to show

that the range of T is closed in H̃. Therefore, by Proposition 2.54 and Theorem

2.57, we see that

G̃ = (T (H))⊥ ⊕ T (H).

Hence we have the orthogonal projection P from l2G(A) onto T (H), the range of

T .

We claim that P (eU) = T (Uη) for each U ∈ G. To see this, let V ∈ G be

arbitrary, then

〈T (V η), P (eU)〉 = 〈PT (V η), eU〉 = 〈T (V η), eU〉

= 〈
∑
W∈G

〈V η,Wη〉eW , eU〉 = 〈V η, Uη〉

= 〈T (V η), T (Uη)〉

We now show that LUT = TU on H for any U ∈ G.

For each V ∈ G, we have

LUT (V η) = LU(
∑
W∈G

〈V η,Wη〉eW ) =
∑
W∈G

〈V η,Wη〉eUW

=
∑
W∈G

〈UV η, UWη〉eUW =
∑
W∈G

〈UV η,Wη〉eW

= TU(V η).
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Thus LUT = TU .

Finally we want to prove that P ∈ G̃ ′.

Indeed, for any U, V ∈ G,

PLU(eV ) = PeUV = T (UV η) = LUT (V η) = LUP (eV ),

which implies that PLU = LUP for any U ∈ G.

By identifying H with T (H), we now complete the proof.

6.2 Dilation of Dual Modular Frame Pairs

The aim of this section is to prove the dilation theorem for dual frame pairs in

Hilbert C∗-modules. Our approach is different from that in [13] which involves

some results that are uncertain in the Hilbert C∗-module setting.

It is well known that every frame in Hilbert space is a direct summand of

Riesz basis. More generally, a dual frame pair in Hilbert space can be dilated to

a Riesz basis and its dual Riesz basis (see [13]). This remains true for Hilbert

C∗-module frames:

Theorem 6.2. Let {xj}j∈J and {yj}j∈J be alternate dual frames for a finitely or

countably generated Hilbert A-module H over a unital C∗-algebra A. Then there

exist a Hilbert A-module K ⊇ H and a Riesz basis {uj}j∈J of K which has a

unique dual {u∗j}j∈J and satisfies

Puj = xj and Pu∗j = yj ∀j ∈ J,

where P is the projection from K onto H.

Proof. Let TX and TY be the analysis operators of {xj}j∈J and {yj}j∈J, and PX

and PY be the orthogonal projections from l2(A) onto the range of TX and TY

respectively.
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For all x ∈ H we have

〈TY x, TY S
−1
Y yj〉 = 〈x, T ∗Y TY S

−1
Y yj〉 = 〈x, SY S

−1
Y yj〉

= 〈x, yj〉 = 〈TY x, ej〉 = 〈TY x, PY ej〉. (6.1)

Therefore PY ej = TY S
−1
Y yj.

Observe that for all x ∈ H we have

PY TXx = PY

∑
j∈J

〈x, xj〉ej =
∑
j∈J

〈x, xj〉PY ej

=
∑
j∈J

〈x, xj〉TY S
−1
Y yj = TY S

−1
Y

∑
j∈J

〈x, xj〉yj

= TY S
−1
Y x. (6.2)

Note that in the third equality we use (6.1).

Let

K = H⊕ P⊥
Y l

2(A) and uj = xj ⊕ P⊥
Y ej.

It is easy to see that {uj}j∈J is a Bessel sequence of K. Then we have the

corresponding analysis operator TU : K → l2(A) given by

TU(x⊕ w) =
∑
j∈J

〈x⊕ w, xj ⊕ P⊥
Y ej〉ej

for any x ∈ H and w ∈ P⊥
Y l

2(A).

Note that for all x ∈ H and w ∈ P⊥
Y l

2(A) we have

TU(x⊕ w) =
∑
j∈J

〈x⊕ w, xj ⊕ P⊥
Y ej〉ej

=
∑
j∈J

(〈x, xj〉+ 〈w,P⊥
Y ej〉)ej = TXx+ w. (6.3)

We claim that TU is a bijection.

We first prove that the range of TU is closed.

To see this, suppose φn ∈ Rang(TU) and φn → φ as n→∞. Then there exist

xn ∈ H and wn ∈ P⊥
Y l

2(A) such that TU(xn ⊕ wn) = φn.
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It follows from identity (6.3) that TXxn + wn = φn → φ as n→∞.

Applying T ∗Y on the both sides we get

T ∗Y (TXxn + wn) = T ∗Y TXxn = xn → T ∗Y φ,

as n→∞.

Since the range of TX is closed, it follows that Rang(TU) is also closed.

To show that TU is onto, by Theorem 2.57, it is equivalent to show that T ∗U

is one-to-one.

Suppose that T ∗U
∑

j∈J ajej = 0 for some {aj}j∈J ∈ l2(A). Then we have

0 = T ∗U
∑
j∈J

ajej =
∑
j∈J

aj(xj ⊕ P⊥
Y ej)

=
∑
j∈J

ajxj ⊕
∑
j∈J

ajP
⊥
Y ej =

∑
j∈J

ajxj ⊕ P⊥
Y

∑
j∈J

ajej. (6.4)

Therefore P⊥
Y

∑
j∈J ajej = 0, and so

∑
j∈J ajej ∈ Rang(PY ) = Rang(TY ). Then

there exists an element z ∈ H such that TY z =
∑

j∈J ajej.

From TY z =
∑

j∈J〈z, yj〉ej, we have aj = 〈z, yj〉 for all j.

Identity (6.4) also implies
∑

j∈J ajxj = 0. Therefore

0 =
∑
j∈J

ajxj =
∑
j∈J

〈z, yj〉xj = z,

which yields that aj = 0 for all j.

We now prove that TU is injective.

Suppose that TU(x⊕ w) = 0 for some x ∈ H and w ∈ P⊥
Y l

2(A).

By (6.3) we have TXx+ w = 0, and so TXx = −w.

Applying PY on the both sides we arrive at PY TXx = PY (−w) = 0.

By (6.2) we can see that 0 = PY TXx = TY S
−1
Y x. Hence x = 0 as both TY and

S−1
Y are injective.

By Theorem 2.57, we can infer that T ∗U is also a bijection.
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Now let SU = T ∗UTU .

Then S−1
U is adjointable and hence bounded. Thus SU is an invertible bounded

A-linear operator, then, by Lemma 3.6, {uj}j∈J is a frame for K.

Let {u∗j}j∈J be the canonical dual frame of {uj}j∈J and write u∗j = zj ⊕ wj.

For any x ∈ H, we have∑
j∈J

〈x, zj〉〈zj, x〉 =
∑
j∈J

〈x⊕ 0, zj ⊕ wj〉〈zj ⊕ wj, x⊕ 0〉

≤ D〈x⊕ 0, x⊕ 0〉 = D〈x, x〉,

where D is the upper bound of {u∗j}j∈J. Therefore {zj}j∈J is a Bessel sequence

of H. We denote the corresponding analysis operator by TZ .

We claim that x =
∑

j∈J〈x, xj〉zj for all x ∈ H.

In fact, for every x ∈ H, we get

x⊕ 0 =
∑
j∈J

〈x⊕ 0, xj ⊕ P⊥
Y ej〉zj ⊕ wj

=
∑
j∈J

〈x, xj〉zj ⊕
∑
j∈J

〈x, xj〉wj,

which implies that x =
∑

j∈J〈x, xj〉zj.

Now for any x ∈ H,

x⊕ 0 =
∑
j∈J

〈x⊕ 0, zj ⊕ wj〉xj ⊕ P⊥
Y ej

=
∑
j∈J

〈x, zj〉xj ⊕
∑
j∈J

〈x, zj〉P⊥
Y ej,

so P⊥
Y TZx = 0 for all x ∈ H. This yields that Rang(TZ) ⊆ Rang(TY ).

By Lemma 4.8 we can infer that zj = yj for all j.

Furthermore the analysis operator of {u∗j}j∈J is onto. Then, again by Lemma

4.8, we get the uniqueness of the dual of {uj}j∈J.

To complete the proof, it remains to prove that both {uj}j∈J and {u∗j}j∈J are

Riesz bases of K.
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Note that we have already proved that TU is onto. Then by Theorem 4.9,

we see that {uj}j∈J is a Riesz basis of K, and so {u∗j}j∈J is also a Riesz basis as

u∗j = S−1
U uj and SU is invertible.

We end this section by pointing out that the dilation theorem still holds when

restricted to structured frames (i.e., frames induced by unitary representations

of groups). Recall that two vectors φ, ψ ∈ H are called dual frame vectors (resp.

dual Riesz basis vectors) for a unitary group U on H if Uφ and Uψ are dual

frames (resp. dual Riesz bases) of H.

The following theorem shows that if two frames generated by unitary groups

are dual frames, they must be generated by the same unitary group.

Theorem 6.3. Let H be a Hilbert A-module over a unital C∗-algebra A, and

ξ, η ∈ H be complete frame vectors for unitary groups G1,G2 on H respectively.

Suppose that π : G1 → G2 is a group isomorphism. If G1ξ and G2η are dual frames,

then π(U) = U for each U ∈ G1.

Proof. For arbitrary U ∈ G1 and x ∈ H, we have

Ux =
∑
V ∈G1

〈Ux, V ξ〉π(V )η =
∑
V ∈G1

〈x, U−1V ξ〉π(V )η

= π(U)
∑
V ∈G1

〈x, U−1V ξ〉π(U−1V )η = π(U)x,

which implies that π(U) = U for all U ∈ G1.

To complete this section we consider the dilation property of structured dual

frame pairs in Hilbert C∗-modules.

Theorem 6.4. Suppose that G is a unitary group on a finitely or countably

generated Hilbert A-module H over a unital C∗-algebra A. Let ξ and η be two

complete dual frame vectors for G. Then there exists a Hilbert A-module K ⊇ H
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and a unitary group G̃, and a complete Riesz vector ξ̃ with a unique dual vector

η̃ for G̃ such that

PŨ ξ̃ = Uξ and PŨη̃ = Uη,

where P is the projection from K onto H.

Proof. Let Tξ, Tη be the analysis operator of Gξ,Gη, and Pξ, Pη be the orthogonal

projections from l2G(A) onto the range of Tξ, Tη respectively.

Let K = H⊕ P⊥
Y l

2
G(A) and Ũ = U ⊕ LU for each U ∈ G.

One can easily verify that G̃ = {Ũ : U ∈ G} is a group of unitary operators

on K.

Let ξ̃ = ξ ⊕ P⊥
η eI , then Ũ ξ̃ = Uξ ⊕ LUP

⊥
η eI = Uξ ⊕ P⊥

η eU .

Then, by Theorem 6.2, ξ̃ is a complete frame vector for G̃.

Let S be the frame operator of G̃ξ̃, and η̃ = S−1ξ̃, as desired.

6.3 Projective Frames

In this section we will discuss the characterization of projective frames. We just

list some basic observations on this topic. We will continue this work in future.

Definition 6.5. Suppose that {xn}∞n=1 is a sequence of Banach space X. Then

{xn}∞n=1 is called a projective frame of X if it is the projective image (i.e. apply

a bounded projection) of a (bounded unconditional) basis for a larger Banach

space.

In [13], it was proved that a sequence {xn}∞n=1 of a Banach space X is a

projective frame if and only if there exists a sequence {yn}∞n=1 ⊆ X∗ such that

x =
∞∑

n=1

〈x, yn〉xn (6.5)

holds true for all x ∈ X.
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We want to find a intrinsic characterization of projective frames in Banach

spaces, which does not assume the additional hypothesis of the associated dual.

In other words, we are interested in finding a characterization of a sequence

{xn}∞n=1 in Banach space X that admits a generalized dual {yn}∞n=1 in the sense

of equation (6.5)

We first look at the Hilbert space case.

Theorem 6.6. In finite dimensional Hilbert spaces every generating sequence is

a projective frame.

Proof. Let H be a Hilbert space and {xn}∞n=1 a generating sequence of H.

We can find an integer N > 0 such that {x1, x2, . . . , xN} generates H. Since

the dimension of H is finite, it follows that {x1, x2, . . . , xN} is a frame of H.

Let {x∗1, x∗2, . . . , x∗N} be any dual frame of {x1, x2, . . . , xN}.

Now let

yn =

{
x∗n if 1 ≤ n ≤ N ;

0 if n > N,

One can easily check that x =
∑∞

n=1〈x, yn〉xn holds true for all x ∈ H.

The following example shows that Theorem 6.6 is no longer true in general

for infinite dimensional Hilbert space.

Example 6.7. Suppose that H is a infinite-dimensional Hilbert space with an

orthonormal basis {e1, e2, . . . }.

For each n, let xn =
∑n

i=1 ei.

Then {xn}∞n=1 is a generating sequence of H, but it is not a projective se-

quence.

Indeed, assume on the contrary that {xn}∞n=1 is a projective frame.Then there

exist a sequence {yn}∞n=1 ⊆ H such that for each x ∈ H we have

x =
∞∑

n−1

〈x, yn〉xn.
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We first consider the case that x = e1. We have

e1 =
∞∑

n=1

〈e1, yn〉(e1 + e2 + · · ·+ en).

It follows that

1 =
∞∑

n=1

〈e1, yn〉

0 =
∞∑

n=2

〈e1, yn〉

0 =
∞∑

n=3

〈e1, yn〉

...
...

...

which yields that 〈e1, y1〉 = 1 and 〈e1, yn〉 = 0 for n ≥ 2.

Therefore y1 = e1.

For the case of x = e2, we have

e2 =
∞∑

n=1

〈e2, yn〉(e1 + e2 + · · ·+ en),

which implies that

0 =
∞∑

n=1

〈e2, yn〉

1 =
∞∑

n=2

〈e2, yn〉

0 =
∞∑

n=3

〈e2, yn〉

...
...

...

It follows that 〈e2, y1〉 = −1, 〈e2, y2〉 = 1 and 〈e2, yn〉 = 0 for all n ≥ 3.

But we already know that y1 = e1 and so 〈e2, y1〉 = 〈e2, e1〉 = 0, a contradic-

tion.
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In future we will focus on finding an intrinsic characterization of projective

frames in infinite dimensional Hilbert spaces as well as in Banach spaces, even

more generally, in Hilbert C∗-modules.
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CHAPTER 7

PALEY-WIENER TYPE PERTURBATION OF

FRAMES AND RIESZ BASES IN HILBERT

C∗-MODULES

In this chapter we shall see that in a finitely or countably generated Hilbert C∗-

module H if a sequence {yj}j∈J in H is ”sufficiently near” to a given frame in H,

then {yj}j∈J is also a frame of H. Hence it will follows that various properties of

frames {xj}j∈J in Hilbert C∗-module H are ”stable” in the sense that they are

conserved by every sequence {yj}j∈J ”sufficiently near” to the frame {xj}j∈J. Our

first result in this chapter extends the Casazza-Christensen’s perturbation theo-

rem of frames to Hilbert C∗-modules. But for the case of Riesz bases in Hilbert

C∗-modules, the stability of Riesz bases is quite different from that of frames.

We will give a complete characterization on all the Riesz bases for Hilbert C∗-

modules such that the perturbation (under Casazza-Christensen’s perturbation

condition) of a Riesz basis still remains a Riesz basis.

7.1 Perturbation of Modular Frames

In this section we concentrate on the perturbation of frames in Hilbert C∗-

modules. We first give a ”necessary and sufficient” perturbation theorem of

frames in any Hilbert C∗-module.
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Theorem 7.1. Suppose that H is a Hilbert C∗-module. Let {xj}j∈J be a frame

for H with frame bounds CX and DX and {yj}j∈J be a sequence of H. Then the

following statements are equivalent:

(1) {yj}j∈J is a frame of H;

(2) There is a constant M > 0 so that for all x ∈ H we have

‖
∑
j∈J

〈x, xj − yj〉〈xj − yj, x〉‖ ≤M‖
∑
j∈J

〈x, xj〉〈xj, x〉‖

and

‖
∑
j∈J

〈x, xj − yj〉〈xj − yj, x〉‖ ≤M‖
∑
j∈J

〈x, yj〉〈yj, x〉‖.

Moreover, if {yj}j∈J is a Bessel sequence, then (1) and (2) are equivalent to

(3) There exists a constant M > 0 so that

‖
∑
j∈J

〈x, xj − yj〉〈xj − yj, x〉‖ ≤M‖
∑
j∈J

〈x, yj〉〈yj, x〉‖

holds for all x ∈ H.

Proof. (1)⇒(2). Let CY and DY be the frame bounds of {yj}j∈J.

For every x ∈ H we have

‖
∑

j∈J〈x, xj − yj〉〈xj − yj, x〉‖
= ‖

∑
j∈J(〈x, xj〉 − 〈x, yj〉)(〈xj, x〉 − 〈yj, x〉)‖

= ‖
∑

j∈J〈x, xj〉〈xj, x〉+
∑

j∈J〈x, yj〉〈yj, x〉
−
∑

j∈J〈x, xj〉〈yj, x〉 −
∑

j∈J〈x, yj〉〈xj, x〉‖
≤ ‖2(

∑
j∈J〈x, xj〉〈xj, x〉+

∑
j∈J〈x, yj〉〈yj, x〉)‖

≤ 2(‖
∑

j∈J〈x, xj〉〈xj, x〉‖+DY ‖〈x, x〉‖)
≤ 2(‖

∑
j∈J〈x, xj〉〈xj, x〉‖+ DY

CX
‖
∑

j∈J〈x, xj〉〈xj, x〉‖)
= 2(1 + DY

CX
)‖
∑

j∈J〈x, xj〉〈xj, x〉‖.

Similarly, we have

‖
∑
j∈J

〈x, xj − yj〉〈xj − yj, x〉‖ ≤ 2(1 +
DX

CY

)‖
∑
j∈J

〈x, xj〉〈xj, x〉‖.
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Therefore we can choose M = max{2(1 + DY

CX
), 2(1 + DX

CY
)}.

(2)⇒(1). Given M in (2) and any x ∈ H we have

CX‖〈x, x〉‖ ≤ ‖
∑

j∈J〈x, xj〉〈xj, x〉‖
= ‖

∑
j∈J(〈x, xj − yj〉+ 〈x, yj〉)(〈xj − yj, x〉+ 〈yj, x〉)‖

≤ 2(
∑

j∈J〈x, xj − yj〉〈xj − yj, x〉+
∑

j∈J〈x, yj〉〈yj, x〉)
≤ 2(M + 1)‖

∑
j∈J〈x, yj〉〈yj, x〉‖

= 2(M + 1)‖
∑

j∈J(〈x, yj − xj〉+ 〈x, xj〉)(〈yj − xj, x〉+ 〈x, xj〉)‖
≤ 4(M + 1)‖

∑
j∈J〈x, yj − xj〉〈yj − xj, x〉+

∑
j∈J〈x, xj〉〈xj, x〉‖

= 4(M + 1)‖
∑

j∈J〈x, xj − yj〉〈xj − yj, x〉+
∑

j∈J〈x, xj〉〈xj, x〉‖
≤ 4(M + 1)2‖

∑
j∈J〈x, xj〉〈xj, x〉‖

≤ 4(M + 1)2DX‖〈x, x〉‖.

Therefore

CX

2(M + 1)
‖〈x, x〉‖ ≤ ‖

∑
j∈J

〈x, yj〉〈yj, x〉‖ ≤ 2(M + 1)DX‖〈x, x〉‖.

The moreover part follows from the proof of (2)⇒(1).

Before we prove the first main result of this section, we need the following

result which is due to Casazza and Christensen ([11]). It is a generalization of the

famous Neumann Theorem which states that an operator U on a Banach space

is invertible if ‖I − U‖ < 1.

Lemma 7.2. ([11]) Let X be a Banach space, and U : X → X a linear operator.

Assume that there exist constants λ1, λ2 ∈ (0, 1) such that

‖Ux− x‖ ≤ λ1‖x‖+ λ2‖Ux‖, ∀x ∈ X.

Then U is bounded and invertible with

‖U‖ ≤ 1 + λ1

1− λ2

and ‖U−1‖ ≤ 1 + λ2

1− λ1

.

We are now in a position to prove the following theorem.
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Theorem 7.3. Suppose that H is a finitely or countably generated Hilbert A-

module H over a unital C∗-algebra A. Let {xj}j∈J be a frame for H with frame

bounds C and D. Suppose that {yj}j∈J is a sequence of H and there exist

λ1, λ2, µ ≥ 0 such that max{λ1 + µ√
C
, λ2} < 1. Then {yj}j∈J is also a frame

for H with bounds

(
(1− λ1)

√
C − µ

1 + λ2

)2 and (
(1 + λ1)

√
D + µ

1− λ2

)2,

if one of the following conditions is fulfilled for any finite sequence {cj}n
j=1 ⊆ A

and all x ∈ H:

‖
∑
j∈J

〈x, xj − yj〉〈xj − yj, x〉‖
1
2 (7.1)

≤ λ1‖
∑
j∈J

〈x, xj〉〈xj, x〉‖
1
2 + λ2‖

∑
j∈J

〈x, yj〉〈yj, x〉‖
1
2 + µ‖x‖;

or

‖
n∑

j=1

cj(xj − yj)‖ ≤ λ1‖
n∑

j=1

cjxj‖+ λ2‖
n∑

j=1

cjyj‖+ µ‖
n∑

j=1

cjc
∗
j‖

1
2 . (7.2)

Proof. Let TX and SX denote the analysis operator and frame operator of {xj}j∈J

respectively.

Assume first that condition (7.1) holds true for all x ∈ H.

We now define an operator TY : H → l2(A) by

TY x =
∑
j∈J

〈x, yj〉ej.

Then condition (7.1) turns to be

‖TXx− TY x‖ ≤ λ1‖TXx‖+ λ2‖TY x‖+ µ‖x‖.

On one hand we have

(1− λ2)‖TY x‖ ≤ (1 + λ1)‖TXx‖+ µ‖x‖,
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which implies that

‖TY x‖ ≤
1

1− λ2

[(1 + λ1)‖TXx‖+ µ‖x‖] ≤ (1 + λ1)
√
D + µ

1− λ2

‖x‖.

Therefore {yj}j∈J is a Bessel sequence with Bessel bound ( (1+λ1)
√

D+µ
1−λ2

)2 .

On the other hand we have

(1− λ1)‖TXx‖ − µ‖x‖ ≤ (1 + λ2)‖TY x‖.

Therefore

‖TY x‖ ≥
1

1 + λ2

[(1− λ1)‖TXx‖ − µ‖x‖] ≥ (1− λ1)
√
C − µ

1 + λ2

‖x‖,

which implies that {yj}j∈J is a frame.

Suppose now that condition (7.2) holds. Then for each {cj}j∈J ∈ l2(A) we

have

‖
n∑

j=1

cjyj‖ ≤
1

1− λ2

[(1 + λ1)‖
n∑

j=1

cjxj‖+ µ‖
n∑

j=1

cjc
∗
j‖

1
2 ],

which yields that

‖
n∑

j=1

cjyj‖ ≤
1

1− λ2

[(1 + λ1)‖
∞∑

j=1

cjxj‖+ µ‖
∞∑

j=1

cjc
∗
j‖

1
2 ].

Furthermore, we obtain

‖
∞∑

j=1

cjyj‖ ≤
1

1− λ2

[(1 + λ1)‖
∞∑

j=1

cjxj‖+ µ‖
∞∑

j=1

cjc
∗
j‖

1
2 ].

Therefore we can define a bounded operator U : H → l2(A) by

U{cj} =
∑
j∈J

cjyj,

which satisfying

‖U{cj}‖ ≤
1

1− λ2

[(1 + λ1)‖T ∗X{cj}‖+ µ‖{cj}‖] ≤
(1 + λ1)

√
D + µ

1− λ2

‖{cj}‖.

By Proposition 3.11, {yj}j∈J is a Bessel sequence with bound ( (1+λ1)
√

D+µ
1−λ2

)2.
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Note that for each {cj}j∈J ∈ l2(A) we also have

‖
∑
j∈J

cj(xj − yj)‖ ≤ λ1‖
∑
j∈J

cjxj‖+ λ2‖
∑
j∈J

cjyj‖+ µ‖
∑
j∈J

cjc
∗
j‖

1
2 .

Then for each x ∈ H, letting {cj} = TXS
−1
X x, we get

‖x− UTXS
−1
X x‖ ≤ λ1‖x‖+ λ2‖UTXS

−1
X x‖+ µ‖TXS

−1
X x‖

≤ λ1‖x‖+
µ√
C
‖x‖+ λ2‖UTXS

−1
X x‖.

By Lemma 7.2, UTXS
−1
X is invertible with

‖UTXS
−1
X ‖ ≤

1 + λ1 + µ√
C

1− λ2

and

‖(UTXS
−1
X )−1‖ ≤ 1 + λ2

1− (λ1 + µ√
C
)
.

Now for arbitrary x ∈ H, we have

x = UTXS
−1
X (UTXS

−1
X )−1x =

∑
j∈J

〈(UTXS
−1
X )−1x, S−1

X xj〉yj.

It follows that

‖x‖4

= ‖〈x, x〉‖2

= ‖
∑
j∈J

〈(UTXS
−1
X )−1x, S−1

X xj〉〈yj, x〉‖2

≤ ‖
∑
j∈J

〈(UTXS
−1
X )−1x, S−1

X xj〉〈S−1
X xj, (UTXS

−1
X )−1x〉‖ · ‖

∑
j∈J

〈x, yj〉〈yj, x〉‖

≤ 1

C
‖〈(UTXS

−1
X )−1x, (UTXS

−1
X )−1x〉‖ · ‖

∑
j∈J

〈x, yj〉〈yj, x〉‖

≤ 1

C
(

1 + λ2

1− (λ1 + µ√
C
)
)2‖x‖2 · ‖

∑
j∈J

〈x, yj〉〈yj, x〉‖.

Note that in the second inequality we apply the fact that {S−1
X xj}j∈J is a frame

with frame bounds 1
D

and 1
C
.
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It follows that

(
(1− λ1)

√
C − µ

1 + λ2

)2‖x‖2 ≤ ‖
∑
j∈J

〈x, yj〉〈yj, x〉‖.

7.2 Perturbation of Modular Riesz Bases

For the extension of the second part of Theorem 1.1, we first point out that if

µ = 0 in the condition (7.2) of Theorem 7.3, then {yj}j∈J is a Riesz basis provided

that {xj}j∈J is a Riesz basis.

Theorem 7.4. Let H be a finitely or countably generated Hilbert A-module H
over a unital C∗-algebra A and {xj}j∈J a Riesz basis for H. Suppose that {yj}j∈J

is a sequence of H and there exist λ1, λ2 ∈ [0, 1). If

‖
∑
j∈J

cj(xj − yj)‖ ≤ λ1‖
∑
j∈J

cjxj‖+ λ2‖
∑
j∈J

cjyj‖ (7.3)

holds for all finite sequence {cj}n
j=1 ⊆ A, then {yj}j∈J is also a Riesz basis.

Proof. We first claim that yj 6= 0 for each j.

Assume to the contrary that there exists j0 such that yj0 = 0. Choose {cj} =

ej0 , then we have

‖xj0‖ ≤ λ1‖xj0‖,

which implies that xj0 = 0, a contradiction.

By Theorem 7.3, we see that {yj}j∈J is also a frame of H. We denote the

analysis operators of {xj}j∈J and {yj}j∈J by TX and TY respectively.

We now claim that Rang(TX) = Rang(TY ).

If {cj} ∈ KerT ∗X , then we have

‖T ∗Y {cj}‖ ≤ λ2‖T ∗Y {cj}‖,
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which leads to {cj} ∈ KerT ∗Y .

In the same manner we can show that KerT ∗Y ⊆ KerT ∗X , and so KerT ∗X =

KerT ∗Y .

It follows from Proposition 3.12 that bothRang(T ∗X) andRang(T ∗Y ) are closed,

and hence both Rang(TX) and Rang(TY ) are closed. Now applying Theorem

15.3.8 in [55] we see that Rang(TX) = Rang(TY ).

Then by Theorem 4.1, we can infer that {yj}j∈J is also a Riesz basis of H.

As we have seen from Lemma 4.1 that the structure of Hilbert C∗-module

Riesz bases is much more complicated than the Hilbert space Riesz bases. There-

fore there is no surprise that the perturbation of Riesz bases in Hilbert C∗-

modules could be quite different from that in Hilbert spaces. The following

example shows that the second part of Theorem 1.1 is no longer true in general

for Hilbert C∗-module Riesz bases.

Example 7.5. Let l∞ be the set of all bounded complex-valued sequences. For

any u = {uj}j∈N and v = {vj}j∈N in l∞, we define

uv = {ujvj}j∈N, u∗ = {ūj}j∈N and ‖u‖ = max
j∈N

|uj|.

Then A = {l∞, ‖ · ‖} is a C∗-algebra.

Let H = c0 be the set of all sequences converging to zero. For any u, v ∈ H
we define

〈u, v〉 = uv∗ = {uj v̄j}j∈N.

Then H is a Hilbert A-module.

For each j, let xj = ej. Obviously, {xj}j∈N is a Parseval Riesz basis of H.

Now let

yj =

{
e1 + e2 if j = 1, 2,

ej if j 6= 1, 2,

and λ1 = 1
8
, λ2 = 15

16
and µ = 3

4
.
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Then one can check that condition (7.2) in Theorem 7.3 is satisfied. But

{yj}j∈J is not a Riesz basis.

Our second main result is to give a necessary and sufficient condition under

which every perturbation {yj}j∈J of a Riesz basis {xj}j∈J is also a Riesz basis in

Hilbert C∗-modules.

Theorem 7.6. Suppose that {xj}j∈J is a Riesz basis of H with frame bounds

C and D, where H is a finitely or countably generated Hilbert A-module over a

unital C∗-algebra A. Assume that there exist λ1, λ2 ≥ 0 and µ > 0 such that

max{λ1 +
µ√
C
, λ2} < 1.

Then the following are equivalent:

(i) Every sequence {yj}j∈J in H satisfying the following perturbation condition

is again a Riesz basis:

‖
n∑

j=1

cj(xj − yj)‖ ≤ λ1‖
n∑

j=1

cjxj‖+ λ2‖
n∑

j=1

cjyj‖+ µ‖
n∑

j=1

cjc
∗
j‖

1
2 (7.4)

for any c1, c2, . . . , cn ∈ A.

(ii) KerT ∗X = l2(B), where TX is the analysis operator of {xj}j∈J and B =

{a ∈ A : aH = {0}}.

In case the equivalent conditions are satisfied, we also have KerT ∗Y = KerT ∗X

and Rang(TY ) = Rang(TX), where TY is the analysis operator of {yj}j∈J.

Proof. From Theorem 7.3 and its proof we can infer that {yj}j∈J is a frame and

satisfies

‖
∑
j∈J

cj(xj − yj)‖ ≤ λ1‖
∑
j∈J

cjxj‖+ λ2‖
∑
j∈J

cjyj‖+ µ‖
∑
j∈J

cjc
∗
j‖

1
2

for all {cj} ∈ l2(A).

”(i) ⇒ (ii)”. Suppose first that any sequence {yj}j∈J satisfying condition

(7.4) is a Riesz basis. We now show that KerT ∗X = l2(B).
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Obviously, l2(B) ⊆ KerT ∗X .

Now pick an arbitrary {aj}j∈J ∈ KerT ∗X . We need to prove that ajH = {0}
for each j.

Assume on the contrary that there exists j0 ∈ J such that aj0H 6= {0}. We

have two cases:

Case 1 There exists j1 ∈ J such that aj0xj1 6= 0.

Choose M > 0 such that
‖xj1

‖
M

≤ µ.

Consider sequence {zj}j∈J given by

zj =

{
xj0 − 1

M
xj1 , if j = j0;

xj, otherwise.

One can check that {zj}j∈J satisfies condition (7.4).

Now let {cj} be a sequence such that

cj =


Maj0 , if j = j0;

aj0 , if j = j1;

aj, otherwise.

Observe that ∑
j∈J

cjzj =
∑
j∈J

ajxj = 0.

But

cj0zj0 = −aj0xj1 6= 0.

Thus {zj}j∈J is not a Riesz basis, a contradiction.

Case 2 aj0xj = 0 for all j ∈ J.

We pick z ∈ H such that aj0z 6= 0, and N > 0 such that
√

2
N
‖z‖ ≤ µ.

Consider a sequence {zj}j∈J defined by

zj =


x1 + 1

N
z, if j = 1;

x2 − 1
N
z, if j = 2;

xj, otherwise.
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Note that {zj}j∈J also satisfies condition (7.4).

Letting cj = aj0 for all j, we have∑
j∈J

cjzj =
∑
j∈J

aj0xj = 0.

But

c1z1 = −c2z2 =
aj0

N
z 6= 0,

which contradicts the fact that {zj}j∈J is a Riesz basis.

”(ii) ⇒ (i)”. Suppose now that KerT ∗X = l2(B) and {yj}j∈J is an arbitrary

sequence satisfying condition (7.4).

By Corollary 4.3, we consider any sequence {aj} ∈ l2(A) such that
∑

j∈J ajyj =

0.

We claim that {aj} ∈ l2(B).

Assume on the contrary that {aj} /∈ l2(B). By Theorem 2.57 we have

l2(A) = KerT ∗X ⊕ (KerT ∗X)⊥ = l2(B)⊕ (l2(B))⊥.

Thus {aj} has a unique decomposition

{aj} = {a(1)
j } ⊕ {a

(2)
j },

where {a(1)
j } ∈ l2(B) and {a(2)

j } is a nonzero sequence in (l2(B))⊥.
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It follows that

‖
∑
j∈J

ajyj‖

= ‖
∑
j∈J

(a
(1)
j + a

(2)
j )yj‖ = ‖

∑
j∈J

a
(2)
j yj‖

= ‖
∑
j∈J

a
(2)
j xj −

∑
j∈J

a
(2)
j (xj − yj)‖

≥ ‖
∑
j∈J

a
(2)
j xj‖ − ‖

∑
j∈J

a
(2)
j (xj − yj)‖

≥ ‖
∑
j∈J

a
(2)
j xj‖ − λ1‖

∑
j∈J

a
(2)
j xj‖ − λ2‖

∑
j∈J

a
(2)
j yj‖ − µ‖{a(2)

j }‖

= (1− λ1)‖
∑
j∈J

a
(2)
j xj‖ − λ2‖

∑
j∈J

a
(2)
j yj‖ − µ‖{a(2)

j }‖

≥ [(1− λ1)
√
C]‖{a(2)

j }‖ − λ2‖
∑
j∈J

a
(2)
j yj‖ − µ‖{a(2)

j }‖

= [(1− λ1)
√
C − µ]‖{a(2)

j }‖ − λ2‖
∑
j∈J

a
(2)
j yj‖.

Note that in the last inequality we apply Proposition 3.13.

It follows that

0 = ‖
∑
j∈J

a
(2)
j yj‖ ≥

(1− λ1)
√
C − µ

1 + λ2

‖{a(2)
j }‖,

and hence a
(2)
j = 0 for each j, a contradiction.

Thus we can infer that KerT ∗Y = l2(B).

To show that {yj}j∈J is a Riesz basis, it remains to show that yj 6= 0 for each

j.

Assume on the contrary that yj0 = 0 for some jo ∈ J. For any a ∈ A, let

cj =

{
a, if j = j0;

0, otherwise.

Then
∑

j∈J cjyj = 0, i.e. {cj}j∈J ∈ KerT ∗Y .
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Since KerT ∗X = KerT ∗Y , we see that axj0 = 0 for any a ∈ A. Therefore xj0 = 0

which leads to a contradiction with the assumption that {xj}j∈J is a Riesz basis.

This completes the proof.

Remark 7.7. Case 2 in the above proof states that there exists an element a ∈ A
such that axj = 0 for all j but aH 6= {0}, where {xj}j∈J is a Riesz basis of a

Hilbert A-moduleH. Though this never occurs in Hilbert spaces, it could happen

in Hilbert C∗-modules. For example, let’s consider the C∗-algebra A = M2×2(C)

of all 2× 2 complex matrices.

Let H = A and for any x, y ∈ H define

〈x, y〉 = xy∗.

Then H is a Hilbert A-module.

Choose

x1 =

(
1 0

−1 0

)
and x2 =

(
0 1

0 −1

)
.

One can check that {x1, x2} is a Riesz basis of H.

Pick

a =

(
1 1

1 1

)
.

Then we have

ax1 = ax2 =

(
0 0

0 0

)
.

But, it is obvious that

aH 6= {

(
0 0

0 0

)
}.
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