You are here

ANTENNA-COUPLED INFRARED AND MILLIMETER-WAVE DETECTORS: FABRICATION, MEASUREMENT AND OPTIMIZATION

Download pdf | Full Screen View

Date Issued:
2006
Abstract/Description:
Antenna-coupled detectors provide uncooled, cost-effective solutions for infrared and millimeter-wave imaging. This work describes the design, fabrication, measurement, and optimization of several types of antenna-coupled detectors for LWIR (8 - 12 µm) and 94 GHz radiation. Two types of millimeter-wave antenna-coupled detectors were fabricated and tested: a slot antenna coupled to a bolometer, and a patch antenna coupled to a SiC Schottky diode. Electromagnetic modeling of the antennas helped guide the design of antennas with better impedance matching to the detectors. Schottky diodes are discussed as detectors for millimeter-wave and infrared radiation, with the goal of increasing the cutoff frequency to allow infrared detection. The magnitude of response of antenna-coupled bolometric detectors to infrared radiation is affected by the thermal-conduction properties of the sensor structure. Two fabrication processes were developed to improve the thermal isolation of the antenna-coupled bolometer from its substrate. The first process creates a membrane beneath the device. Measured results show a factor of 100 increase in responsivity over an identical device without a membrane. The second process thermally isolates the device from its substrate by suspending the metallic structure in air. Several factors for optimization of infrared antenna-coupled detectors are investigated. The complex dielectric function of the metal from which the antenna is constructed can affect the performance of the device. The use of a ground plane and dielectric standoff layer beneath the antenna can increase the sensor responsivity. Dielectric material properties and thicknesses are considered, and incorporated in device simulations. Finally, a potential fabrication process is presented for via connections from the antenna-coupled detector through a ground plane to bond pads to mitigate the effect of bias lines on antenna behavior.
Title: ANTENNA-COUPLED INFRARED AND MILLIMETER-WAVE DETECTORS: FABRICATION, MEASUREMENT AND OPTIMIZATION.
0 views
0 downloads
Name(s): Middleton, Charles, Author
Boreman, Glenn, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2006
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Antenna-coupled detectors provide uncooled, cost-effective solutions for infrared and millimeter-wave imaging. This work describes the design, fabrication, measurement, and optimization of several types of antenna-coupled detectors for LWIR (8 - 12 µm) and 94 GHz radiation. Two types of millimeter-wave antenna-coupled detectors were fabricated and tested: a slot antenna coupled to a bolometer, and a patch antenna coupled to a SiC Schottky diode. Electromagnetic modeling of the antennas helped guide the design of antennas with better impedance matching to the detectors. Schottky diodes are discussed as detectors for millimeter-wave and infrared radiation, with the goal of increasing the cutoff frequency to allow infrared detection. The magnitude of response of antenna-coupled bolometric detectors to infrared radiation is affected by the thermal-conduction properties of the sensor structure. Two fabrication processes were developed to improve the thermal isolation of the antenna-coupled bolometer from its substrate. The first process creates a membrane beneath the device. Measured results show a factor of 100 increase in responsivity over an identical device without a membrane. The second process thermally isolates the device from its substrate by suspending the metallic structure in air. Several factors for optimization of infrared antenna-coupled detectors are investigated. The complex dielectric function of the metal from which the antenna is constructed can affect the performance of the device. The use of a ground plane and dielectric standoff layer beneath the antenna can increase the sensor responsivity. Dielectric material properties and thicknesses are considered, and incorporated in device simulations. Finally, a potential fabrication process is presented for via connections from the antenna-coupled detector through a ground plane to bond pads to mitigate the effect of bias lines on antenna behavior.
Identifier: CFE0001242 (IID), ucf:46908 (fedora)
Note(s): 2006-08-01
Ph.D.
Optics and Photonics, Other
Doctorate
This record was generated from author submitted information.
Subject(s): infrared
millimeter-wave
detector
antenna-coupled
fabrication
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001242
Restrictions on Access: public
Host Institution: UCF

In Collections