You are here

DRIVING SIMULATOR VALIDATION AND REAR-END CRASH RISK ANALYSIS AT A SIGNALISED INTERSECTION

Download pdf | Full Screen View

Date Issued:
2006
Abstract/Description:
In recent years the use of advanced driving simulators has increased in the transportation engineering field especially in evaluating safety countermeasures. The driving simulator at UCF is a high fidelity simulator with six degrees of freedom. This research aims at validating the simulator in terms of speed and safety with the intention of using it as a test bed for high risk locations and to use it in developing traffic safety countermeasures. The Simulator replicates a real world signalized intersection (Alafaya trail (SR-434) and Colonial Drive (SR-50)). A total of sixty one subjects of age ranging from sixteen to sixty years were recruited to drive the simulator for the experiment, which consists of eight scenarios. This research validates the driving simulator for speed, safety and visual aspects. Based on the overall comparisons of speed between the simulated results and the real world, it was concluded that the UCF driving simulator is a valid tool for traffic studies related to driving speed behavior. Based on statistical analysis conducted on the experiment results, it is concluded that SR-434 northbound right turn lane and SR-50 eastbound through lanes have a higher rear-end crash risk than that at SR-50 westbound right turn lane and SR-434 northbound through lanes, respectively. This conforms to the risk of rear-end crashes observed at the actual intersection. Therefore, the simulator is validated for using it as an effective tool for traffic safety studies to test high-risk intersection locations. The driving simulator is also validated for physical and visual aspects of the intersection as 87.10% of the subjects recognized the intersection and were of the opinion that the replicated intersection was good enough or realistic. A binary logistic regression model was estimated and was used to quantify the relative rear-end crash risk at through lanes. It was found that in terms of rear-end crash risk SR50 east- bound approach is 23.67% riskier than the SR434 north-bound approach.
Title: DRIVING SIMULATOR VALIDATION AND REAR-END CRASH RISK ANALYSIS AT A SIGNALISED INTERSECTION .
0 views
0 downloads
Name(s): Chilakapati, Praveen, Author
Abdel-Aty, Mohamed, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2006
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In recent years the use of advanced driving simulators has increased in the transportation engineering field especially in evaluating safety countermeasures. The driving simulator at UCF is a high fidelity simulator with six degrees of freedom. This research aims at validating the simulator in terms of speed and safety with the intention of using it as a test bed for high risk locations and to use it in developing traffic safety countermeasures. The Simulator replicates a real world signalized intersection (Alafaya trail (SR-434) and Colonial Drive (SR-50)). A total of sixty one subjects of age ranging from sixteen to sixty years were recruited to drive the simulator for the experiment, which consists of eight scenarios. This research validates the driving simulator for speed, safety and visual aspects. Based on the overall comparisons of speed between the simulated results and the real world, it was concluded that the UCF driving simulator is a valid tool for traffic studies related to driving speed behavior. Based on statistical analysis conducted on the experiment results, it is concluded that SR-434 northbound right turn lane and SR-50 eastbound through lanes have a higher rear-end crash risk than that at SR-50 westbound right turn lane and SR-434 northbound through lanes, respectively. This conforms to the risk of rear-end crashes observed at the actual intersection. Therefore, the simulator is validated for using it as an effective tool for traffic safety studies to test high-risk intersection locations. The driving simulator is also validated for physical and visual aspects of the intersection as 87.10% of the subjects recognized the intersection and were of the opinion that the replicated intersection was good enough or realistic. A binary logistic regression model was estimated and was used to quantify the relative rear-end crash risk at through lanes. It was found that in terms of rear-end crash risk SR50 east- bound approach is 23.67% riskier than the SR434 north-bound approach.
Identifier: CFE0001391 (IID), ucf:46964 (fedora)
Note(s): 2006-12-01
M.S.
Engineering and Computer Science, Department of Civil and Environmental Engineering
Masters
This record was generated from author submitted information.
Subject(s): Driving simulator validation
safety
speed
visual validation
rear-end crash risk
logistic regression model.
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001391
Restrictions on Access: public
Host Institution: UCF

In Collections